6. [8 points]

Values of a function f and some of its derivatives are given in the table on the right. Use this information to answer the questions that follow.

x	0	π
$f(x)$	-6	2π
$f^{\prime}(x)$	6	2
$f^{\prime \prime}(x)$	1	-3
$f^{\prime \prime \prime}(x)$	-1	0
$f^{\prime \prime \prime \prime}(x)$	5	$-9 / 2$

a. [4 points] Find a formula for the Taylor polynomial of degree 4 for f about $x=\pi$.

$$
\begin{aligned}
P_{4}(x) & =\sum_{n=0} \frac{f^{(n)}(\pi)}{n!}(x-\pi)^{n} \\
& =f(\pi)+f^{\prime}(\pi)(x-\pi)+\frac{f^{\prime \prime}(\pi)}{2!}(x-\pi)^{2}+\frac{f^{\prime \prime \prime \prime}(\pi)}{3!}(x-\pi)^{3}+\frac{f^{\prime \prime}(\pi)}{4!}(x-\pi)^{4} \\
& =2 \pi+2(x-\pi)+\frac{-3}{2}(x-\pi)^{2}+\frac{0}{6}(x-\pi)^{3}+\frac{-9 / 2}{24}(x-\pi)^{4} \\
& =2 \pi+2(x-\pi)-\frac{3}{2}(x-\pi)^{2}-\frac{3}{16}(x-\pi)^{4}
\end{aligned}
$$

b. [4 points] Find the first three nonzero terms of the Taylor series for $\int_{0}^{x} f\left(t^{2}\right) d t$ about $x=0$.
Near $0, f(x) \approx f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}$
$=-6+6 x+\frac{1}{2} x^{2}$
 $=-6 t+2 t^{3}+\left.\frac{1}{10} t^{5}\right|_{0} ^{x}$

$$
=-6 x+2 x^{3}-\frac{1}{10} x^{5}
$$

