1. [15 points] The table below gives several values of a twice differentiable function f along with its derivative f' and continuous second derivative f''

x	0	1	2	3	4	5	6
f(x)	1	2.4	2.5	2.2	2.6	4.3	6.7
f'(x)	2	0.7	-0.3	-0.1	1.1	2.2	2.2
f''(x)	-1	-1.4	-0.5	0.8	1.4	0.7	-0.7

Unless otherwise stated, you do not have to show work, but work shown might be considered for partial credit.

a. [3 points] Find the value of $\int_1^4 x f''(x) dx$.

Answer:
$$\int_{1}^{4} x f''(x) dx =$$
b. [3 points] Let $H(x) = \int_{x}^{x^{2}+1} f'(3t) dt$. Compute $H'(1)$.

Answer: H'(1) = ______ **c.** [3 points] Use TRAP(3) to approximate $\int_0^6 f(x) dx$. Write out each term in your sum.

Answer:
$$\int_0^6 f(x) dx \approx$$

d. [3 points] Find the 2nd degree Taylor polynomial $P_2(x)$ for f(x) centered at x = 3.

Answer:
$$P_2(x) =$$

e. [3 points] Use your answer to part (d) to approximate $\int_0^6 f(x) dx$.

Answer: $\int_0^6 f(x) dx \approx$ _____