1. [15 points] The table below gives several values of a twice differentiable function f along with its derivative f^{\prime} and continuous second derivative $f^{\prime \prime}$

x	0	1	2	3	4	5	6
$f(x)$	1	2.4	2.5	2.2	2.6	4.3	6.7
$f^{\prime}(x)$	2	0.7	-0.3	-0.1	1.1	2.2	2.2
$f^{\prime \prime}(x)$	-1	-1.4	-0.5	0.8	1.4	0.7	-0.7

Unless otherwise stated, you do not have to show work, but work shown might be considered for partial credit.
a. $[3$ points $]$ Find the value of $\int_{1}^{4} x f^{\prime \prime}(x) d x$.

Answer: $\int_{1}^{4} x f^{\prime \prime}(x) d x=$
b. [3 points] Let $H(x)=\int_{x}^{x^{2}+1} f^{\prime}(3 t) d t$. Compute $H^{\prime}(1)$.

Answer: $\quad H^{\prime}(1)=$
c. [3 points] Use $\operatorname{TRAP}(3)$ to approximate $\int_{0}^{6} f(x) d x$. Write out each term in your sum.

Answer: $\int_{0}^{6} f(x) d x \approx$ \qquad
d. [3 points] Find the 2nd degree Taylor polynomial $P_{2}(x)$ for $f(x)$ centered at $x=3$.

Answer: $\quad P_{2}(x)=$ \qquad
e. [3 points] Use your answer to part (d) to approximate $\int_{0}^{6} f(x) d x$.

Answer: $\int_{0}^{6} f(x) d x \approx$ \qquad

