4. [9 points] The polar curve $r=\sin (4 \theta) \cos (\theta)$ for $0 \leq \theta \leq \pi$ is shown below.

Note that there are two "large loops" and two "small loops".
For reference, note that for this curve, $\frac{d r}{d \theta}=4 \cos (\theta) \cos (4 \theta)-\sin (\theta) \sin (4 \theta)$
a. [3 points] For what values of θ does the polar curve $r=\sin (4 \theta) \cos (\theta)$ trace once around the "small loop" in the third quadrant? (This portion of the curve is indicated by the dotted line.) Give your answer as an interval of θ values between 0 and π.

Answer:
b. [3 points] Write, but do not evaluate, an expression involving one or more integrals that gives the total arc length of the two small loops.

Answer: Arc Length $=$ \qquad
c. [3 points] Write, but do not evaluate, an expression involving one or more integrals that gives the area of the region that is enclosed by the polar curve $r=2$ but is outside the curve $r=\sin (4 \theta) \cos (\theta)$.
\qquad

