6. [6 points] Consider the curve \(y = \sqrt{1 - x^2} \). Suppose a paperweight is formed by rotating this curve around the \(x \)-axis. This paperweight has a density given by \(\rho(x) = 2 + \cos(x) \text{ g/cm}^3 \). The units on both axes are centimeters (cm).

a. [3 points] Write an expression that gives the approximate mass, in grams, of a slice of the paperweight taken perpendicular to the \(x \)-axis at coordinate \(x \) with thickness \(\Delta x \). (Assume that \(\Delta x \) is small but positive.) Your expression should not involve any integrals.

Answer: Mass of slice \(\approx \) ________________________________

b. [3 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of the paperweight.

Answer: Mass = ________________________________

7. [6 points] Determine whether the following series converges absolutely, converges conditionally, or diverges, and give a complete argument justifying your answer. In particular, be sure to show all work and include any convergence tests used.

\[\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{n} \]

Circle one: CONVERGES ABSOLUTELY CONVERGES CONDITIONALLY DIVERGES

Justification: