8. [8 points] Suppose Xena the cat is running around the backyard while wearing a tracking device on her collar. The device measures her x - and y-coordinates in meters, with the origin set as the center of the yard. Suppose t is measured in minutes after Xena went outside. Xena's x - and y-coordinates satisfy the following differential equations for $t>0$:

$$
\frac{d x}{d t}=\cos (x) \sqrt{t^{2}+\cos ^{2}(x)} \quad \text { and } \quad \frac{d y}{d t}=-\sin (y) \sqrt{t^{2}+\sin ^{2}(y)}
$$

Portions of the slope fields for these differential equations are shown below.

Note the following: One minute after she goes outside, Xena is at the point ($\pi, 3 \pi / 2$).
a. [3 points] How fast is Xena traveling one minute after she goes outside?

Answer: \quad Speed $=$ \qquad meters per minute
b. [3 points] Find the equation (in $x y$-coordinates) of the line tangent to Xena's path one minute after she goes outside.

Answer: $y=$ \qquad
c. [2 points] If Xena keeps running around the yard for a long time, what point (in $x y$-coordinates) in the yard will she approach?

Answer:

