9. [12 points] For each of the questions on this page:

You must circle at least one choice to receive any credit.
No credit will be awarded for unclear markings. No justification is necessary.
For parts a-c below, circle all of the available correct answers, and circle "NONE OF THESE" if none of the available options are correct.
a. [4 points] Suppose a_{n} and b_{n} are nonzero sequences. Functions P and Q satisfy the following: $P(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ for $-1<x \leq 3$ and $Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ for $-1 \leq x \leq 1$. Which of the following must be true?
i. The radius of convergence of the Taylor series for $P(x)$ around $x=1$ is at least 1 .
ii. $\sum_{n=1}^{\infty} \frac{b_{n}}{n}$ converges. \quad iii. $\sum_{n=0}^{\infty} a_{n} 2^{n}$ diverges. iv. $\sum_{n=0}^{\infty} \frac{1}{a_{n}}$ diverges.
v. The Taylor series for $P(x)$ around $x=0$ is $\sum_{n=0}^{\infty} a_{n} x^{n}$. vi. NONE OF These
b. [4 points] Suppose $f(x)$ is a positive, decreasing, and concave up function. Suppose further that all derivatives of $f(x)$ exist at $x=0$. Define $F(x)=\int_{0}^{x} f(t) d t$. Which of the following must be true?
i. $\operatorname{TRAP}(n)$ is an overestimate of $\int_{0}^{1} F(x) d x$ for all positive integers n.
ii. $F(x)+F^{\prime \prime}(x)$ is an increasing function.
iii. The Taylor series for $F(x)$ and for $f(x)$ centered around $x=0$ both have the same radius of convergence.
iv. $\int_{0}^{1} \frac{f(x)}{F(x)} d x$ converges. v. $\sum_{n=1}^{\infty} f(n)$ converges. vi. NONE OF THESE
c. [4 points] Consider the differential equation $y^{\prime}=(\cos (x)-\sin (y))^{2}$, and suppose $y=g(x)$ is the solution to this differential equation that passes through the point $(0,0)$. Which of the following must be true?
i. This differential equation has no equilibrium solutions. ii. $g^{\prime \prime}(0)=-2$.
iii. $y=\arcsin (\cos (x))$ is an equilibrium solution. \quad iv. $g(x) \leq 4 x$ for all $x>0$
v. $g(x)$ is increasing.
vi. NONE OF THESE

