1. [15 points] The table below gives several values of a twice differentiable function f along with its derivative f' and continuous second derivative f''

x	0	1	2	3	4	5	6
f(x)	1	2.4	2.5	2.2	2.6	4.3	6.7
f'(x)	2	0.7	-0.3	-0.1	1.1	2.2	2.2
f''(x)	-1	-1.4	-0.5	0.8	1.4	0.7	-0.7

Unless otherwise stated, you do not have to show work, but work shown might be considered for partial credit.

a. [3 points] Find the value of
$$\int_1^4 x f''(x) dx$$
.

Let
$$u = x$$
 $v = f'(x)$
 $u' = 1$ $v = f'(x)$

$$\int x f''(x) dx = \int uv' dx = uv - \int u'v dx = x f'(x) - \int (i)f'(x) dx = x f'(x) - f(x) + C.$$

$$\int_{0}^{4} x f''(x) dx = x f'(x) - f(x)\Big|_{0}^{4} = \left[4f'(x) - f(x)\right] - \left[1f'(x) - f(x)\right] = \left[4(1.1) - 26\right]$$
Answer:
$$\int_{0}^{4} x f''(x) dx = \frac{3.5}{4}$$

b. [3 points] Let
$$H(x) = \int_x^{x^2+1} f'(3t) dt$$
. Compute $H'(1)$.

$$H(x) = \frac{1}{3}F(3+)\Big|_{x}^{x^{2+1}} = \frac{1}{3}F(3x^{2}+3) - \frac{1}{3}F(3x)$$

so
$$H'(x) = \frac{1}{3}F'(3x^2+3)(6x) - F'(3x)$$

50
$$H'(1) = \frac{1}{3} F'(6)(6) - F'(3)$$
 Answer: $H'(1) = 4.5$

c. [3 points] Use TRAP(3) to approximate $\int_0^6 f(x) dx$. Write out each term in your sum.

d. [3 points] Find the 2nd degree Taylor polynomial $P_2(x)$ for f(x) centered at x=3.

$$P_{\perp}(x) = f(3) + f'(3)(x-3) + \frac{1}{2}f''(3)(x-3)^{2}$$

$$= 2.2 + (-0.1)(x-3) + \frac{1}{2}(0.8)(x-3)^{2}$$
Answer: $P_{2}(x) = \frac{2.2 - 0.1(x-3) + 0.4(x-3)^{2}}{2.2 - 0.1(x-3) + 0.4(x-3)^{2}}$

e. [3 points] Use your answer to part (d) to approximate
$$\int_{0}^{6} f(x) dx$$
.

$$\int_{0}^{6} f(x) dx \approx \int_{0}^{6} P_{2}(x) dx = \int_{0}^{6} (2.2 - 0.1(x-3) + 0.4(x-3)^{2}) dx$$

$$= \int_{-3}^{3} (2.2 - 0.1\omega + 0.4\omega^{2}) d\omega = 2.2\omega - 0.05\omega^{2} + \frac{0.4}{3}\omega^{3}|_{-3}^{3}$$

$$= \int_{-3}^{3} (2.2 - 0.1\omega + 0.4\omega^{2}) d\omega = 2.2\omega - 0.05\omega^{2} + \frac{0.4}{3}\omega^{3}|_{-3}^{3}$$

Answer:
$$\int_0^6 f(x) dx \approx$$
 20.4