
- 6. [6 points] Consider the curve $y = \sqrt{1-x^2}$. Suppose a paperweight is formed by rotating this curve around the x-axis. This paperweight has a density given by $\rho(x) = 2 + \cos(x)$ g/cm³. The units on both axes are centimeters (cm).
 - a. [3 points] Write an expression that gives the approximate mass, in grams, of a slice of the paperweight taken perpendicular to the x-axis at coordinate x with thickness Δx . (Assume that Δx is small but positive.) Your expression should <u>not</u> involve any integrals.

Tadius of slice =
$$\sqrt{1-x^2}$$
 cm
Volume of slice = $\pi r^2 \Delta x = \pi (1-x^2) \Delta x$ cm³
Mass of slice = $p(x)$. vol

Answer: Mass of slice
$$\approx$$
 $(2+cos \times) \pi(1-x^2) \Delta x$

b. [3 points] Write, but do <u>not</u> evaluate, an expression involving one or more integrals that gives the mass, in grams, of the paperweight.

Answer: Mass =
$$\int_{-1}^{1} (z + \cos x) \pi (1 - x^2) dx$$

7. [6 points] Determine whether the following series converges absolutely, converges conditionally, or diverges, and give a complete argument justifying your answer. In particular, be sure to show all work and include any convergence tests used.

Converges Absolutely Circle one:

Converges Conditionally

DIVERGES

Justification:

- terms alternate in sign
- Iterms decreases
- Iterms 0.

so converges by the alternating series test.

But
$$\frac{\ln(n)}{n} \ge \frac{1}{n}$$
 eventually,

and $\sum \frac{1}{n}$ diverges by the

 $p-tes+(p=1)$. So

 $\sum \frac{\ln(n)}{n}$ diverges by

comparison