9. [12 points] For each of the questions on this page:

You must circle at least one choice to receive any credit.
No credit will be awarded for unclear markings. No justification is necessary.
For parts apc below, circle all of the available correct answers, and circle "NONE OF THESE" if none of the available options are correct.
a. [4 points] Suppose a_{n} and b_{n} are nonzero sequences. Functions P and Q satisfy the following: $P(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ for $-1<x \leq 3$ and $Q(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ for $-1 \leq x \leq 1$. Which of the following must be true?
i. The radius of convergence of the Taylor series for $P(x)$ around $x=1$ is at least 1 .

$$
\left|\frac{b_{n}}{n}\right|<\left|b_{n}\right| \quad \text { ii. } \sum_{n=1}^{\infty} \frac{b_{n}}{n} \text { converges. iii. } \sum_{n=0}^{\infty} a_{n} 2^{n} \text { diverges. } \quad \text { iv. } \sum_{n=0}^{\infty} \frac{1}{a_{n}} \text { diverges. } \begin{aligned}
& \text { since } p(2)=\sum a_{n} \\
& \text { converges, } a_{n} \rightarrow 0 \\
& \text { so } \frac{1}{a_{n}} \rightarrow \infty
\end{aligned}
$$

v. The Taylor series for $P(x)$ around $x=0$ is $\sum_{n=0}^{\infty} a_{n} x^{n}$. vi. NONE OF THESE
b. [4 points] Suppose $f(x)$ is a positive, decreasing, and concave up function. Suppose further that all derivatives of $f(x)$ exist at $x=0$. Define $F(x)=\int_{0}^{x} f(t) d t$. Which of the following must be true? $\quad f$ pos, $\mathrm{dec} \Rightarrow F$ inc, conc Down
f dec, concup $\Rightarrow f^{\prime}$ reg, inc
False \rightarrow i. $\operatorname{TRAP}(n)$ is an overestimate of $\int_{0}^{1} F(x) d x$ for all positive integers n if $F=\sum a_{n} x^{n} F=$
since F conc $D_{n} \quad$ if $F=\sum a_{n} x^{n} F=\sum n a_{n} x^{n-1}$

$\int_{0}^{1} \frac{f(x)}{F(x)} d x=\lim _{a \rightarrow 0^{+}} \int_{0}^{1} \frac{f(x)}{F(x)} d x \int_{\text {iv. }}^{1} \frac{f(x)}{F(x)} d x$ converges. v. $\sum_{n=1}^{\infty} f(n)$ converges. vi. NONE OF THESE
$\omega=F(x) \Rightarrow d \omega=f(x) d x$
let $\omega=F(x) \Rightarrow d \omega=f(x) d x \quad$ counterexample: $f(x)=1+e^{-x}$
$=\lim _{a \rightarrow 0^{+}} \int_{F(a)}^{F(1)} \frac{d \omega}{\omega}$ c. [4 points] Consider the differential equation $y^{\prime}=(\cos (x)-\sin (y))^{2}$, and suppose $y=g(x)$ is the solution to this differential equation that passes through the point $(0,0)$.
$=\int_{0}^{F(1)} \frac{d \omega}{\omega} \quad$ Which of the following must be true?
Which diverge)
by p-lest $(p=1)$
i. This differential equation has no equilibrium solutions. ii. $g^{\prime \prime}(0)=-2$.

iii. $y=\arcsin (\cos (x))$ is an equilibrium solution.
iv. $g(x) \leq 4 x$ for all $x>0$
v. $g(x)$ is increasing.
vi. NONE OF THESE because $y^{\prime} \leq 4$

