9. [12 points] For each of the questions on this page:

You must circle at least one choice to receive any credit.

No credit will be awarded for unclear markings. No justification is necessary.

For parts a-c below, circle all of the available correct answers, and circle "NONE OF THESE" if none of the available options are correct.

- a. [4 points] Suppose a_n and b_n are nonzero sequences. Functions P and Q satisfy the following: $P(x) = \sum_{n=0}^{\infty} a_n (x-1)^n$ for $-1 < x \le 3$ and $Q(x) = \sum_{n=0}^{\infty} b_n x^n$ for $-1 \le x \le 1$. Which of the following must be true?
 - i. The radius of convergence of the Taylor series for P(x) around x=1 is at least 1.

ii.
$$\sum_{n=1}^{\infty} \frac{b_n}{n}$$
 converges.

iii.
$$\sum_{n=0}^{\infty} a_n 2^n$$
 diverges.

$$\frac{b_n}{n} < b_n$$
iii.
$$\sum_{n=1}^{\infty} \frac{b_n}{n} \text{ converges.}$$
iii.
$$\sum_{n=0}^{\infty} a_n 2^n \text{ diverges.}$$
iv.
$$\sum_{n=0}^{\infty} \frac{1}{a_n} \text{ diverges.}$$

$$\sum_{n=0}^{\infty} \frac{1}{a_n} \text{ diverges.}$$

$$\sum_{n=0}^{\infty} \frac{1}{a_n} \text{ diverges.}$$

Since
$$P(z) = Za_n$$

Converges, $a_n \rightarrow c$
 $Su \stackrel{!}{a} \rightarrow \infty$

- v. The Taylor series for P(x) around x = 0 is $\sum_{n=1}^{\infty} a_n x^n$. vi. None of these
- b. [4 points] Suppose f(x) is a positive, decreasing, and concave up function. Suppose further that all derivatives of f(x) exist at x = 0. Define $F(x) = \int_{0}^{x} f(t) dt$.

Which of the following must be true?

fpos, dec = Finc, conc Down

False \rightarrow i. TRAP(n) is an overestimate of $\int_0^1 F(x) dx$ for all positive integers n.

Since F conc DnFor $F = \sum a_n x^n$, $F = \sum n a_n x^{n-1}$ Ratio lest: $\sum a_n x^n$ convirted $\sum n a_n x^{n-1}$ III. F(x) + F''(x) is an increasing function.

The property of the propert

iii. The Taylor series for F(x) and for f(x) centered around x=0 both have the same radius of convergence.

$$\int_{0}^{1} \frac{f(x)}{F(x)} dx = \lim_{\alpha \to 0^{+}} \int_{0}^{1} \frac{f(x)}{F(x)} dx \text{ converges.} \qquad \text{v. } \sum_{n=1}^{\infty} f(n) \text{ converges.} \qquad \text{vi. NONE OF THESE}$$

$$\lim_{\alpha \to \infty} F(x) \Rightarrow \lim_{\alpha \to \infty} f(x) dx \qquad \text{vi. NONE OF THESE}$$

$$\lim_{\alpha \to \infty} F(x) dx \Rightarrow \lim_{\alpha \to \infty} f(x) dx \qquad \text{converges.} \qquad \text{vi. NONE OF THESE}$$

v.
$$\sum_{n=1}^{\infty} f(n)$$
 converges. vi. NONE OF THESE

= SF(1) dw

= $\lim_{\alpha \to 0^+} \int_{\mathbb{R}^{\alpha}}^{\mathbb{R}^{\alpha}} \frac{d\omega}{\omega}$ c. [4 points] Consider the differential equation $y' = (\cos(x) - \sin(y))^2$, and suppose y = g(x) is the solution to this differential equation that passes through the point (0,0). Which of the following <u>must</u> be true?

which diverges by prest (P=1)

i. This differential equation has no equilibrium solutions.

ii.
$$g''(0) = -2$$
.

iii. $y = \arcsin(\cos(x))$ is an equilibrium solution.

iv.
$$g(x) \le 4x$$
 for all $x > 0$

v. g(x) is increasing.

vi. NONE OF THESE