10. [9 points] For each of the following, circle all correct answers. No justification is necessary.

a. [3 points] The series \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2x)^{n+1}}{n} \) is a Taylor series centered at \(x = 0 \) for some function \(q(x) \). Which of the following statements are true?

i. The series diverges at \(x = \frac{1}{2} \).
ii. The series diverges at \(x = -\frac{1}{2} \).
iii. \(q(x) \) could be \(2x \ln(1 + 2x) \).
iv. \(q(x) \) could be \(\ln(1 + 2x) \).
v. The series converges to \(6 \ln(1 + 6) \) at \(x = 3 \).
vi. The series converges to \(\ln(1 + 6) \) at \(x = 3 \).
vii. NONE OF THESE

b. [3 points] Let \(f(x) \) be a continuous, differentiable function, with \(f(1) = 1 \), \(f'(1) = 2 \). Which of the following must be an antiderivative of \(f'(f(x))f'(x) \) that passes through \((1,3)\)?

i. \(f(f(x)) + 2 \)
ii. \(f'(f(x)) + 1 \)
iii. \(\frac{1}{2} (f(x))^2 + \frac{5}{2} \)
iv. \(3 + \int_{0}^{x-1} f'(f(t))f'(t)dt \)
v. \(\int_{1}^{x} f'(f(t))f'(t)dt \)
vi. \(3 + \int_{0}^{x-1} f'(f(t + 1))f'(t + 1)dt \)
vii. \(3 + \int_{1}^{x} f'(f(t))f'(t)dt \)
viii. NONE OF THESE

c. [3 points] Which of the following functions are solutions to the differential equation \(\frac{d^2 y}{dx^2} + 4y = 0 \)?

i. \(y = 4 \cos(x) \)
ii. \(y = \cos(2x) \)
iii. \(y = \cos(2x) + 4 \)
iv. \(y = 4 \cos(2x) \)
v. \(y = e^{2x} \)
vi. \(y = e^{-2x} \)
vii. NONE OF THESE