6. [11 points]
 a. [7 points] Determine whether the following series converges or diverges. Be sure to fully justify your answer, showing all work and indicating any theorems you use.
 \[\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^3 + 5} \]
 Answer (Circle one): \hspace{1cm} Diverges \hspace{1cm} Converges
 Justification:

 b. [4 points] Let \(f(x) \) be a positive, decreasing function on \([1, \infty)\) with \(\lim_{x \to \infty} f(x) = 1 \), and let \(a_n = f(n) \) and \(S_n = a_1 + \cdots + a_n \) for all \(n \geq 1 \). Decide whether the following converge, diverge, or if it cannot be determined. No justification is necessary.
 (i) The integral \(\int_{1}^{\infty} f(x) \, dx \)
 Diverges \hspace{1cm} Converges \hspace{1cm} CANNOT BE DETERMINED
 (ii) The sequence \(a_n \)
 Diverges \hspace{1cm} Converges \hspace{1cm} CANNOT BE DETERMINED
 (iii) The sequence \(S_n \)
 Diverges \hspace{1cm} Converges \hspace{1cm} CANNOT BE DETERMINED
 (iv) The series \(\sum_{n=1}^{\infty} \frac{1}{a_n} \)
 Diverges \hspace{1cm} Converges \hspace{1cm} CANNOT BE DETERMINED