7. [11 points] Some values of a function $m(x)$ and its derivatives are given below.

x	0	2
$m(x)$	4	1
$m^{\prime}(x)$	-1	0
$m^{\prime \prime}(x)$	0	0
$m^{\prime \prime \prime}(x)$	3	-2
$m^{\prime \prime \prime \prime}(x)$	5	8

a. [4 points] Find a formula for $P_{4}(x)$, the Taylor polynomial of degree 4 for $m(x)$ about $x=2$.

Answer: $\quad P_{4}(x)=$ \qquad
b. [3 points] Use your answer to approximate the value of $\int_{1}^{3} m(x) d x$. Show your work.

Answer: $\int_{1}^{3} m(x) d x \approx$ \qquad
c. [4 points] Let $G(x)$ be the antiderivative of the function $g(x)=m\left(3 x^{2}\right)$ with $G(0)=5$. Find the first three nonzero terms of the Taylor series for $G(x)$ about $x=0$.

Answer:

