10. [9 points] For each of the following, circle all correct answers. No justification is necessary.
a. [3 points] The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\left((2 x)^{n+1}\right)}{n}$ is a Taylor series centered at $x=0$ for some function $q(x)$. Which of the following statements are true?
i. The series diverges at $x=\frac{1}{2}$.
ii. The series diverges at $x=\frac{-1}{2}$.
iii. $q(x)$ could be $2 x \ln (1+2 x)$.
iv. $q(x)$ could be $\ln (1+2 x)$.
v. The series converges to $6 \ln (1+6)$ at $x=3$.
vi. The series converges to $\ln (1+6)$ at $x=3$.
vii. NONE OF THESE
b. [3 points] Let $f(x)$ be a continuous, differentiable function, with $f(1)=1, f^{\prime}(1)=2$. Which of the following must be an antiderivative of $f^{\prime}(f(x)) f^{\prime}(x)$ that passes through $(1,3)$?
i. $f(f(x))+2$
v. $\int_{1}^{x} f^{\prime}(f(t)) f^{\prime}(t) d t$
ii. $f^{\prime}(f(x))+1$
vi. $3+\int_{0}^{x-1} f^{\prime}(f(t+1)) f^{\prime}(t+1) d t$
iii. $\frac{1}{2}(f(x))^{2}+\frac{5}{2}$
vii. $3+\int_{1}^{x} f^{\prime}(f(t)) f^{\prime}(t) d t$
iv. $3+\int_{0}^{x-1} f^{\prime}(f(t)) f^{\prime}(t) d t$
viii. NONE OF THESE
c. [3 points] Which of the following functions are solutions to the differential equation $\frac{d^{2} y}{d x^{2}}+$ $4 y=0$?
i. $y=4 \cos (x)$
v. $y=e^{2 x}$
ii. $y=\cos (2 x)$
vi. $y=e^{-2 x}$
iii. $y=\cos (2 x)+4$
vii. NONE OF THESE
iv. $y=4 \cos (2 x)$
