2. [9 points] Scientists are studying the bite of several different rodents. To do this, they give a wafer cookie to the animal, and take it away after the animal takes one bite.

- r is measured in inches
- The wafer is modeled by the region inside the polar curve

$$
r=\frac{2}{5}
$$

(the solid line in the diagram).

- The rodent's bite is modeled by the region inside the polar curve

$$
r=\frac{1}{2-\sin (\theta)}
$$

and inside the wafer (the dashed line in the diagram).

- The wafer remaining after the bite is
 shaded in the diagram.
a. [3 points] For what values of θ between 0 and 2π does the rodent's bite meet the edge of the wafer? Justify your answer algebraically, and give your answers in exact form.

Solution: The bite meets the edge of the wafer when

$$
\frac{2}{5}=\frac{1}{2-\sin (\theta)},
$$

which happens when $\sin (\theta)=\frac{-1}{2}$, giving us $\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$.
Note that $\arcsin (-1 / 2)<0$, so this does not satisfy the requirements of the problem. However, we could use this to find that $\pi-\arcsin (-1 / 2)$ and $2 \pi+\arcsin (-1 / 2)$ are both between 0 and 2π.

$$
\text { Answer: } \quad \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

b. [3 points] Write, but do not evaluate, an expression involving one or more integrals that gives the area, in square inches, of the wafer remaining after the bite.

Answer: $\quad \frac{1}{2} \int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} \frac{4}{25}-\frac{1}{(2-\sin (\theta))^{2}} d \theta$
c. [3 points] The bite mark in the wafer is represented by the thick dashed line in the diagram. Write, but do not evaluate, an expression involving one or more integrals that gives the length, in inches, of this bite mark.
Solution: We use the formula for arc length and

$$
\frac{d r}{d \theta}=\frac{\cos (\theta)}{(2-\sin (\theta))^{2}}
$$

Answer: $\int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}} \sqrt{\frac{1}{(2-\sin (\theta))^{2}}+\frac{\cos ^{2}(\theta)}{(2-\sin (\theta))^{4}}} d \theta$

