3. [10 points] The Taylor series centered at 3 for a function $g(x)$ is given by

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{2 n}}{n 4^{n}}
$$

a. [5 points] Determine the radius of convergence for this Taylor series. Show all work.

Solution: Let $a_{n}=\frac{(-1)^{n}}{n 4^{n}}(x-3)^{2 n}$. Then we will find the radius of convergence by applying the ratio test to $\sum_{n=1}^{\infty} a_{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{(n+1) 4^{n+1}}|x-3|^{2 n+2}}{\frac{1}{n 4^{n}|x-3|^{2 n}}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{4(n+1)}|x-3|^{2} \\
& =\frac{1}{4}|x-3|^{2}
\end{aligned}
$$

This is less than 1 when $|x-3|^{2}<4$, or, equivalently, when $|x-3|<2$. This means that $\sum_{n=0}^{\infty} a_{n}$ converges when $|x-3|<2$, and the radius is 2 .

Radius:
2
b. [2 points] Which of the following best describes the concavity of $g(x)$ at $x=3$ ? Circle the one best answer. No justification is necessary.

Concave Up Concave Down Neither Cannot be determined
c. [3 points] Find $g^{(1010)}(3)$.

Solution: Using the formula for Taylor series, we know that the degree 1010 term will be $\frac{g^{(1010)}(3)}{1010!}(x-3)^{1010}$. With the formula we've been given for this problem, we see that the degree 1010 term happens when $n=1010 / 2=505$, and will be $\frac{-(x-3)^{1010}}{505 \cdot 4^{505}}$. Therefore

$$
\begin{aligned}
\frac{g^{(1010)(3)}}{1010!}(x-3)^{1010} & =\frac{-(x-3)^{1010}}{505 \cdot 4^{505}} \\
\frac{g^{(1010)}(3)}{1010!} & =-\frac{1}{505 \cdot 4^{505}} \\
g^{(1010)}(3) & =-\frac{1010!}{505 \cdot 4^{505}}
\end{aligned}
$$

$$
g^{(1010)}(3)=\xrightarrow{-\frac{1010!}{505 \cdot 4^{505}}}
$$

