5. [13 points] Two particles move in the $x y$-plane. At time $t>0$, the position of particle $A$ is given by

$$
\left\{\begin{array}{l}
x(t)=-6-3 t \\
y(t)=2 t-k
\end{array}\right.
$$

and the position of particle $B$ is

$$
\left\{\begin{array}{l}
x(t)=-4 t \\
y(t)=t^{2}-t-8
\end{array}\right.
$$

For the following questions, justify your answers algebraically.
a. [4 points] Find $k$ so that the two particles must collide.

Solution: The two particles have the same $x$ coordinate when $-6-3 t=-4 t$, so when $t=6$. To ensure they collide, at $t=6$, they must have the same $y$ coordinate, so:

$$
2(6)-k=6^{2}-6-8,
$$

giving us $k=-10$.
Answer: $k=\longrightarrow-10$
b. [3 points] At the time the particles collide, which is moving faster?

Solution: We have $x^{\prime}(t)=-3$ and $y^{\prime}(t)=2$ for particle $A ; x^{\prime}(t)=-4$ and $y^{\prime}(t)=2 t-1$ for particle $B$. So, the speed at $t=6$ for particle $A$ is $\sqrt{9+4}=\sqrt{13}$, and for particle $B$ is $\sqrt{16+(2(6)-1)^{2}}=\sqrt{137}$.

Answer:
Particle $A$
Particle $B$
c. [3 points] Use MID(2) to approximate the length of the path traveled by particle $B$ between $t=0$ and $t=4$. Write out all the terms in your sum.

Solution: Our integral is $\int_{0}^{4} \sqrt{16+(2 t-1)^{2}} d t$.

$$
\text { Answer: } \quad \underline{2\left(\sqrt{16+(2(1)-1)^{2}}\right)+2\left(\sqrt{16+(2(3)-1)^{2}}\right)}
$$

d. [3 points] For what positive values of $t$ is the slope of the tangent line to the path of particle $B$ positive?

Solution: The slope of the tangent line at $t$ is $\frac{2 t-1}{-4}$, which is positive when $2 t-1$ is negative, which is when $t<\frac{1}{2}$.

Answer: $\quad 0<t<\frac{1}{2}$ $\qquad$

