- **6**. [11 points]
 - **a**. [7 points] Determine whether the following series converges or diverges. Be sure to fully justify your answer, showing all work and indicating any theorems you use.

$$\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^3 + 5}$$

Diverges

Justification:
Solution: We have
$$\frac{|\sin(2n)|}{n^3+5} \leq \frac{1}{n^3}$$
. Since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges by p -test (as $p = 3 > 1$)
 $\sum_{n=1}^{\infty} \frac{|\sin(2n)|}{n^3+5}$ converges by comparison test. So $\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^3+5}$ converges absolutely.

Answer (Circle one):

b. [4 points] Let f(x) be a positive, decreasing function on $[1, \infty)$ with $\lim_{x \to \infty} f(x) = 1$, and let $a_n = f(n)$ and $S_n = a_1 + \cdots + a_n$ for all $n \ge 1$. Decide whether the following converge, diverge, or if it cannot be determined. No justification is necessary.

(i) The integral
$$\int_{1}^{\infty} f(x) dx$$
Cannot be determinedDivergesConvergesCANNOT be determined(ii) The sequence a_n Cannot be determined(iii) The sequence S_n Cannot be determined(iv) The series $\sum_{n=1}^{\infty} \frac{1}{a_n}$ Cannot be determinedDivergesConvergesCannot be determined(iv) The series $\sum_{n=1}^{\infty} \frac{1}{a_n}$ Cannot be determined

Converges