7. [11 points] Some values of a function $m(x)$ and its derivatives are given below.

x	0	2
$m(x)$	4	1
$m^{\prime}(x)$	-1	0
$m^{\prime \prime}(x)$	0	0
$m^{\prime \prime \prime}(x)$	3	-2
$m^{\prime \prime \prime \prime}(x)$	5	8

a. [4 points] Find a formula for $P_{4}(x)$, the Taylor polynomial of degree 4 for $m(x)$ about $x=2$.

$$
\text { Answer: } \quad P_{4}(x)=\ldots
$$

b. [3 points] Use your answer to approximate the value of $\int_{1}^{3} m(x) d x$. Show your work.

Solution:

$$
\begin{aligned}
\int_{1}^{3} 1-\frac{2}{3!}(x-2)^{3}+\frac{8}{4!}(x-2)^{4} d x & =x-\frac{2}{4!}(x-2)^{4}+\left.\frac{8}{5!}(x-2)^{5}\right|_{1} ^{3} \\
& =\left(1-\frac{2}{4!}+\frac{8}{5!}\right)-\left(-1-\frac{2}{4!}-\frac{8}{5!}\right) \\
& =2+\frac{16}{5!}=\frac{32}{15}
\end{aligned}
$$

Answer: $\int_{1}^{3} m(x) d x \approx \quad \frac{32}{15}$
c. [4 points] Let $G(x)$ be the antiderivative of the function $g(x)=m\left(3 x^{2}\right)$ with $G(0)=5$. Find the first three nonzero terms of the Taylor series for $G(x)$ about $x=0$.

Solution:

Using the table, we see that the first 3 nonzero terms of the Taylor series for $m(x)$ about $x=0$ are $4-x+\frac{1}{3!} x^{3}$. Then the first 3 nonzero terms for the Taylor series for $m\left(3 x^{2}\right)$ about $x=0$ are $4-3 x^{2}+\frac{1}{3!}\left(3 x^{2}\right)^{3}$. To get the Taylor series for an antiderivative of $m\left(3 x^{2}\right)$ about $x=0$, we take an antiderivative of the Taylor series we found above: $C+4 x-\frac{3}{3} x^{3}$. Since $G(0)=5$, we must have $C=5$.

Answer: $\quad 5+4 x-x^{3}$

