7. [11 points] Some values of a function m(x) and its derivatives are given below.

x	0	2
m(x)	4	1
m'(x)	-1	0
m''(x)	0	0
$m^{\prime\prime\prime}(x)$	3	-2
$m^{\prime\prime\prime\prime}(x)$	5	8

a. [4 points] Find a formula for $P_4(x)$, the Taylor polynomial of degree 4 for m(x) about x = 2.

Answer: $P_4(x) = \frac{1 - \frac{2}{3!}(x-2)^3 + \frac{8}{4!}(x-2)^4}{b. [3 points]}$ Use your answer to approximate the value of $\int_1^3 m(x) dx$. Show your work.

Solution:

$$\int_{1}^{3} 1 - \frac{2}{3!}(x-2)^{3} + \frac{8}{4!}(x-2)^{4}dx = x - \frac{2}{4!}(x-2)^{4} + \frac{8}{5!}(x-2)^{5}\Big|_{1}^{3}$$

$$= (1 - \frac{2}{4!} + \frac{8}{5!}) - (-1 - \frac{2}{4!} - \frac{8}{5!})$$

$$= 2 + \frac{16}{5!} = \frac{32}{15}$$
Answer: $\int_{1}^{3} m(x) dx \approx \frac{\frac{32}{15}}{15}$

c. [4 points] Let G(x) be the antiderivative of the function $g(x) = m(3x^2)$ with G(0) = 5. Find the first three nonzero terms of the Taylor series for G(x) about x = 0.

```
Answer: _____ 5 + 4x - x^3
```

Solution:

Using the table, we see that the first 3 nonzero terms of the Taylor series for m(x) about x = 0 are $4 - x + \frac{1}{3!}x^3$. Then the first 3 nonzero terms for the Taylor series for $m(3x^2)$ about x = 0 are $4 - 3x^2 + \frac{1}{3!}(3x^2)^3$. To get the Taylor series for an antiderivative of $m(3x^2)$ about x = 0, we take an antiderivative of the Taylor series we found above: $C + 4x - \frac{3}{3}x^3$. Since G(0) = 5, we must have C = 5.