8. [9 points] Derivative Girl and Gradi-Ant are excited for the end of the semester. To celebrate, they decide to make an Infinite Party Horn. In this problem, x and y are measured in meters. (In Derivative Girl's world, infinite objects are possible.)
a. [4 points] They decide to make the horn by rotating the region bounded by the positive x-axis, the positive y-axis, and the function $y=\frac{1}{2(x+1)^{2}}$ about the line $y=-1$. Write, but do not evaluate, an expression involving one integral that gives the volume, in cubic meters, of the Infinite Party Horn.

$$
\text { Answer: } \quad \pi \int_{0}^{\infty}\left(\frac{1}{2(x+1)^{2}}+1\right)^{2}-1 d x
$$

b. [5 points] Derivative Girl will use her favorite continuous and differentiable functions f and g to make a banner for the Infinite Party Horn. She loves the functions f and g because they have the properties:

- $\frac{d}{d x}\left(\frac{1+x}{g(x)}\right)=f(x)$,
- $\lim _{x \rightarrow \infty} g(x)=\infty$,
- $g(1)=15$,
- $\lim _{x \rightarrow \infty} g^{\prime}(x)=5$,
and the area of the banner, in square meters, is given by

$$
\int_{1}^{\infty} 20 f(x) d x
$$

Does the banner have finite area? If so, what is the banner's area? Show all work and indicate any theorems you use.

Solution: Using the information we've been given, we find

$$
\begin{aligned}
\int_{1}^{\infty} 20 f(x) d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} 20 f(x) d x \\
& =\lim _{b \rightarrow \infty} \frac{20+20 b}{g(b)}-\frac{40}{g(1)} \\
& =\lim _{b \rightarrow \infty} \frac{20}{g^{\prime}(b)}-\frac{40}{15} \text { by L'Hopital's Rule } \\
& =\frac{20}{5}-\frac{40}{15}
\end{aligned}
$$

Answer (Circle one): Infinite area

