8. [9 points] Derivative Girl and Gradi-Ant are excited for the end of the semester. To celebrate, they decide to make an Infinite Party Horn. In this problem, \(x \) and \(y \) are measured in meters. (In Derivative Girl’s world, infinite objects are possible.)

a. [4 points] They decide to make the horn by rotating the region bounded by the positive \(x \)-axis, the positive \(y \)-axis, and the function \(y = \frac{1}{2(x+1)^2} \) about the line \(y = -1 \). Write, but do not evaluate, an expression involving one integral that gives the volume, in cubic meters, of the Infinite Party Horn.

Answer:
\[
\pi \int_{0}^{\infty} \left(\frac{1}{2(x+1)^2} + 1 \right)^2 - 1 \, dx
\]

b. [5 points] Derivative Girl will use her favorite continuous and differentiable functions \(f \) and \(g \) to make a banner for the Infinite Party Horn. She loves the functions \(f \) and \(g \) because they have the properties:

- \(\frac{d}{dx} \left(\frac{1+x}{g(x)} \right) = f(x) \),
- \(g(1) = 15 \),
- \(\lim_{x \to \infty} g(x) = \infty \),
- \(\lim_{x \to \infty} g'(x) = 5 \),

and the area of the banner, in square meters, is given by
\[
\int_{1}^{\infty} 20f(x) \, dx.
\]

Does the banner have finite area? If so, what is the banner’s area? Show all work and indicate any theorems you use.

Solution: Using the information we’ve been given, we find
\[
\int_{1}^{\infty} 20f(x) \, dx = \lim_{b \to \infty} \int_{1}^{b} 20f(x) \, dx
\]
\[
= \lim_{b \to \infty} \frac{20 + 20b}{g(b)} - \frac{40}{g(1)}
\]
\[
= \lim_{b \to \infty} \frac{20}{g'(b)} - \frac{40}{15} \text{ by L'Hopital’s Rule}
\]
\[
= \frac{20}{5} - \frac{40}{15}
\]

Answer (Circle one): Infinite area Finite area: \(\frac{4}{7} \) m\(^2\)