2. [15 points] With a crashing stork market, the infinite trumpet glitch, and the forestry expansion over-expanding, the video game Vegetable Crossing has a lot of issues. Maria designs a new island for the game, and on the island there is an area where players can grow acacia plants.

- The island is in the shape of the polar curve $r=200-100 \cos (\theta)$ where $0 \leq \theta<2 \pi$. The outline of the island is the solid black curve plotted below.
- The acacia-growing zone is shaded blue, and it is formed by the section of the island inside a circle of radius 150 meters centered at the origin. The circle is the dashed green curve plotted below.
- All distances on the graph are in meters.

a. [5 points] The points A and B, labeled above, are the intersection points of the polar curve $r=200-100 \cos (\theta)$ with the dashed green circle. Find points A and B in polar coordinates.
Solution: For the points of intersection, $200-100 \cos (\theta)=150$, and so $\cos (\theta)=\frac{1}{2}$. This means we must have $\theta=\frac{\pi}{3}$ or $\theta=\frac{5 \pi}{3}$. Therefore, $A=\left(150, \frac{\pi}{3}\right)$ and $B=\left(150, \frac{5 \pi}{3}\right)$.
b. [5 points] Find an expression involving one or more integrals for the length, in meters, of the perimeter of the acacia-growing zone. Do not evaluate your integral(s).

Solution: Part of the perimeter, is an arc of the circle of radius 150. The arc length of the section which is within the island is two-thirds $\left(\left(\frac{5 \pi}{3}-\frac{\pi}{3}\right) /(2 \pi)\right)$ of the circumference of the circle, and the circumference of the entire circle is 300π, so the arc length of this section is 200π.
For $f(\theta)=200-100 \cos (\theta)$, we have $f^{\prime}(\theta)=100 \sin (\theta)$, and so the arc length of this section of the polar curve is given by

$$
2 \int_{0}^{\pi / 3} \sqrt{(200-100 \cos (\theta))^{2}+(100 \sin (\theta))^{2}} d \theta
$$

where we have used the symmetry of the region.
In total then, the length of the perimeter is

$$
200 \pi+2 \int_{0}^{\pi / 3} \sqrt{(200-100 \cos (\theta))^{2}+(100 \sin (\theta))^{2}} d \theta
$$

c. [5 points] Players are able to pave any part of the island outside of the acacia-growing zone, at a cost of 7 dubloons per square meter. Find an expression involving one or more integrals for the cost, in dubloons, of paving the entire area which lies outside of the acacia-growing zone. Do not evaluate your integral(s).
Solution: The area outside the acacia-growing zone can be thought of as the area of the sector of the island with $\frac{\pi}{3} \leq \theta \leq \frac{\pi}{3}$ with the area inside the circle in this sector subtracted. The area of this sector of the circle is again two-thirds of the area of the circle, which is equal to $\frac{2}{3} \pi(150)^{2}$, and so the total area of the acacia-growing zone is

$$
\frac{1}{2} \int_{\pi / 3}^{5 \pi / 3}(200-100 \cos (\theta))^{2} d \theta-\frac{2}{3} \pi(150)^{2}
$$

This means that the cost, in dubloons, is

$$
7\left(\frac{1}{2} \int_{\pi / 3}^{5 \pi / 3}(200-100 \cos (\theta))^{2} d \theta-\frac{2}{3} \pi(150)^{2}\right) .
$$

