3. [19 points] Consider the function $B(x)$ described on its domain by its Taylor series around $x=0$,

$$
B(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)!(2 n)!} x^{2 n} .
$$

a. [5 points] Find the first four non-zero terms of the Taylor series for $B(x)$ about $x=0$. You do not need to evaluate any factorials in your answer.
Solution:

$$
B(x)=1-\frac{1}{2!2!} x^{2}+\frac{1}{3!4!} x^{4}-\frac{1}{4!6!} x^{6}+\ldots
$$

b. [6 points] Find the radius of convergence of the Taylor series. Show all of your work and use proper notation.

Solution: We use the ratio test with $a_{n}=\frac{(-1)^{n}}{(n+1)!(2 n)!} x^{2 n}$. We have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{(n+1)!(2 n)!\left|x^{2 n+2}\right|}{(n+2)!(2 n+2)!\left|x^{2 n}\right|} \\
& =\lim _{n \rightarrow \infty} \frac{x^{2}}{(n+2)(2 n+2)(2 n+1)} \\
& =0 \text { for all } x .
\end{aligned}
$$

Therefore, the radius of convergence is ∞.
c. [3 points] Is $B(x)$ an odd function, an even function, or neither? Explain your reasoning. Solution: The Taylor series contains only even powers of x, and so $B(x)$ is an even function.
d. [5 points] Find the value of $B^{(2020)}(0)$. You do not need to evaluate any factorials in your answer.
Solution: We know that $\frac{B^{(2020)}(0)}{2020!} x^{2020}$ appears in the Taylor series for $B(x)$. Comparing this with the given expression for $B(x)$, we see we must have $x^{2 n}=x^{2020}$, i.e. $n=1010$. Therefore, comparing coefficients of x^{2020},

$$
\frac{B^{(2020)}(0)}{2020!}=\frac{(-1)^{1010}}{1011!2020!},
$$

and so

$$
B^{(2020)}(0)=\frac{1}{1011!} .
$$

