2. [5 points] Suppose that the power series $\sum_{n=1}^{\infty} C_{n}(x+2)^{n}$ converges at $x=4$ and diverges at $x=-10$. What can you say about the behavior of the power series at the following values of x ?
a. [1 point] At $x=0$, the power series...

$$
\text { CONVERGES } \quad \text { DIVERGES } \quad \text { CANNOT DETERMINE }
$$

b. [1 point $]$ At $x=-8$, the power series...

CONVERGES
 DIVERGES
 CANNOT DETERMINE

c. [1 point] At $x=8$, the power series... CONVERGES

DIVERGES
CANNOT DETERMINE
d. [1 point] At $x=-4$, the power series...

$$
\text { CONVERGES } \quad \text { DIVERGES } \quad \text { CANNOT DETERMINE }
$$

e. [1 point] At $x=6$, the power series...
3. [7 points] A function $F(x)$ has Taylor series given by

$$
F(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{2^{n}\left(n^{2}+1\right)}(x-1)^{4 n+1}
$$

Answer the following questions regarding the Taylor series:
a. [3 points] Circle the appropriate answer. No work is needed, but partial credit may be given for correct work.
At $x=1, F$ is... INCREASING DECREASING CANNOT DETERMINE
b. [4 points] What is $F^{(2021)}(1)$? Give your answer in exact form and do not try to simplify. Show your work.

$$
F^{(2021)}(1)=
$$

\qquad

