6. [13 points] Values of a function \(g(x) \) and some of its derivatives at \(x = 2 \) are given in the table below. Use this information for some of the problems below.

<table>
<thead>
<tr>
<th>(g(2))</th>
<th>(g'(2))</th>
<th>(g''(2))</th>
<th>(g'''(2))</th>
<th>(g^{(4)}(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

a. [4 points] Find the first 4 nonzero terms of the Taylor series of \(g(x) \) about \(x = 2 \). Write your final answer as a polynomial \(P(x) \) in the blank below.

\[
P(x) = \]

b. [4 points] Using known Taylor series, find the first 3 nonzero terms of the Taylor series of \(f(x) = (x - 2) \ln \left(\frac{x}{2} \right) \) about \(x = 2 \). Write your final answer as a polynomial \(Q(x) \) in the blank below. (Hint: \(f(x) = (x - 2) \ln \left(1 + \frac{(x - 2)}{2} \right) \))

\[
Q(x) = \]

c. [5 points] Let \(H(x) = 1 + \int_2^x f(t) + g(t) \, dt \). Find the first 4 nonzero terms of the Taylor series of \(H \) about \(x = 2 \). Write your final answer as a polynomial \(R(x) \) in the blank below. Partial credit may be given for finding the appropriate terms of \(\int_2^x f(t) \, dt \) or \(\int_2^x g(t) \, dt \).

\[
R(x) = \]