2. [5 points] Suppose that the power series $\sum_{n=1}^{\infty} C_n (x+2)^n$ converges at $x = 4$ and diverges at $x = -10$. What can you say about the behavior of the power series at the following values of x?
 a. [1 point] At $x = 0$, the power series...
 CONVERGES DIVERGES CANNOT DETERMINE
 b. [1 point] At $x = -8$, the power series...
 CONVERGES DIVERGES CANNOT DETERMINE
 c. [1 point] At $x = 8$, the power series...
 CONVERGES DIVERGES CANNOT DETERMINE
 d. [1 point] At $x = -4$, the power series...
 CONVERGES DIVERGES CANNOT DETERMINE
 e. [1 point] At $x = 6$, the power series...
 CONVERGES DIVERGES CANNOT DETERMINE

3. [7 points] A function $F(x)$ has Taylor series given by
 \[F(x) = \sum_{n=0}^{\infty} \frac{(-1)^n(n+1)}{2^n(n^2+1)}(x-1)^{4n+1} \]
 Answer the following questions regarding the Taylor series:
 a. [3 points] Circle the appropriate answer. No work is needed, but partial credit may be given for correct work.
 At $x = 1$, F is...
 INCREASING DECREASING CANNOT DETERMINE
 \[Solution: \] Using the Taylor series,
 \[F'(1) = \frac{(-1)^0(1)}{2^0(1)} = 1 > 0, \]
 so F is increasing at $x = 1$.
 b. [4 points] What is $F^{(2021)}(1)$? Give your answer in exact form and do not try to simplify. Show your work.
 \[Solution: \] Using the Taylor series, the term $(x-1)^{2021}$ appears when $n = 505$, so
 \[F^{(2021)}(1) = \frac{(-1)^{505}(505 + 1)}{2^{505}(505^2 + 1)} \]
 \[F^{(2021)}(1) = \frac{-(506)(2021)!}{2^{505}(505^2 + 1)}. \]