4. [6 points] Find the radius of convergence of the following power series:

$$
\sum_{n=0}^{\infty} \frac{8^{n}(n!)^{3}}{(3 n)!}(x-5)^{3 n}
$$

Show your work including full justifications of any tests you use.
Solution: Setting $a_{n}=\frac{8^{n}(n!)^{3}}{(3 n)!}(x-5)^{3 n}$, compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{8^{n+1}((n+1)!)^{3}}{(3 n+3)!} \frac{(3 n)!}{8^{n}(n!)^{3}}|x-5|^{3} \\
& =\lim _{n \rightarrow \infty} 8 \frac{(n+1)^{3}}{(3 n+3)(3 n+2)(3 n+1)}|x-5|^{3} \\
& =\frac{8}{27}|x-5|^{3} .
\end{aligned}
$$

By the ratio test, the power series converges for

$$
\frac{8}{27}|x-5|^{3}<1 \Longleftrightarrow|x-5|<\left(\frac{27}{8}\right)^{1 / 3}=\frac{3}{2}
$$

The radius of convergence is \qquad $\frac{3}{2}$

