5. [9 points] The radius of convergence of the power series below is 4. Find the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{5 n}{4^{n}\left(n^{2}+1\right)}(x+1)^{n}
$$

Show all your work including full justifications of convergence and divergence of any relevant series. Throughout this problem, you may assume that the radius of convergence is 4 and you do not need to recompute it.
Solution: Observing the power series, the center of the interval of convergence is $x=-1$. Using the radius of convergence, the endpoints are $x=-5$ and $x=3$.

At $x=-5$, the power series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 5 n}{\left(n^{2}+1\right)}
$$

Setting $a_{n}=\frac{5 n}{n^{2}+1}, a_{n}>0, \lim _{n \rightarrow \infty} a_{n}=0$, and $a_{n+1}<a_{n}$. So, by the Alternating Series Test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 5 n}{\left(n^{2}+1\right)}$ converges.

At $x=3$, the power series becomes

$$
\sum_{n=1}^{\infty} \frac{5 n}{\left(n^{2}+1\right)}
$$

For $n \geq 1$,

$$
\frac{5 n}{n^{2}+1} \geq \frac{1}{n}
$$

and by the p-test $(p=1), \sum_{n=1}^{\infty} \frac{1}{n}$ diverges. So, by the Direct Comparison Test, $\sum_{n=1}^{\infty} \frac{5 n}{\left(n^{2}+1\right)}$ diverges.

