6. [13 points] Values of a function $g(x)$ and some of its derivatives at $x=2$ are given in the table below. Use this information for some of the problems below.

$g(2)$	$g^{\prime}(2)$	$g^{\prime \prime}(2)$	$g^{\prime \prime \prime}(2)$	$g^{(4)}(2)$
1	2	-4	0	4

a. [4 points] Find the first 4 nonzero terms of the Taylor series of $g(x)$ about $x=2$. Write your final answer as a polynomial $P(x)$ in the blank below.

$$
P(x)=\frac{1+2(x-2)-2(x-2)^{2}+\frac{1}{6}(x-2)^{4}}{}
$$

b. [4 points] Using known Taylor series, find the first 3 nonzero terms of the Taylor series of $f(x)=(x-2) \ln \left(\frac{x}{2}\right)$ about $x=2$. Write your final answer as a polynomial $Q(x)$ in the blank below. (Hint: $f(x)=(x-2) \ln \left(1+\frac{(x-2)}{2}\right)$)
Solution: For $-1<x \leq 1$

$$
\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots,
$$

about $x=0$. So,

$$
(x-2) \ln \left(1+\frac{(x-2)}{2}\right)=(x-2)\left(\frac{x-2}{2}-\frac{1}{2}\left(\frac{x-2}{2}\right)^{2}+\frac{1}{3}\left(\frac{x-2}{2}\right)^{3}+\ldots\right)
$$

$$
Q(x)=\frac{\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{8}+\frac{(x-2)^{4}}{24}}{2}
$$

c. [5 points] Let $H(x)=1+\int_{2}^{x} f(t)+g(t) d t$. Find the first 4 nonzero terms of the Taylor series of H about $x=2$. Write your final answer as a polynomial $R(x)$ in the blank below. Partial credit may be given for finding the appropriate terms of $\int_{2}^{x} f(t) d t$ or $\int_{2}^{x} g(t) d t$.

Solution: Putting together (a) and (b), R is the first 4 nonzero terms of $1+\int_{2}^{x} P(t)+$ $Q(t) d t$. Note that we only need the first 3 terms of P and the first term of Q :

$$
\begin{aligned}
1+\int_{2}^{x} P(t)+Q(t) d t & =1+\left.\left[t+(t-2)^{2}-\frac{2}{3}(t-2)^{3}\right]\right|_{2} ^{x}+\left.\left[\frac{(t-2)^{3}}{6}\right]\right|_{2} ^{x} \\
& =1+(x-2)+(x-2)^{2}-\frac{2}{3}(x-2)^{3}+\frac{(x-2)^{3}}{6}
\end{aligned}
$$

$$
R(x)=\frac{1+(x-2)+(x-2)^{2}-\frac{(x-2)^{3}}{2}}{}
$$

