9. [7 points] Emily is transporting a chocolate ice cream cone up 1 story of East Hall to her friend. However, there is a hole in the bottom of the cone and ice cream drips out in a steady stream.

The mass of the cone is 200 grams and there are initially 100 grams of ice cream in the cone. The ice cream drips out at a rate of $4 \mathrm{grams} / \mathrm{sec}$. Emily spends 10 seconds raising the cone at a constant rate of $0.5 \mathrm{~m} / \mathrm{sec}$ to reach her friend.
a. [3 points] What is the total mass in grams of the cone and the ice cream in the cone when Emily has lifted it a vertical distance $\ell \mathrm{m}$?
Solution: When Emily has lifted the cone a vertical distance of $\ell \mathrm{m}$, she has lifted for $2 \ell \mathrm{sec}$. Therefore, 8ℓ grams of ice cream has dripped out of the cone. The cone and ice cream start at 300 grams.

$$
\text { Mass }=
$$

\qquad grams
b. [4 points] Write, but do not evaluate, an integral that represents the total amount of work (in grams $\mathrm{m}^{2} / \mathrm{sec}^{2}$) done by Emily lifting the cone filled while the ice cream drips. You may assume the acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
Solution: The work to lift the rocket between ℓ and $\ell+\Delta \ell \mathrm{m}$ is

$$
\Delta W=9.8(300-8 \ell) \Delta \ell .
$$

Hence, the total work is below.

$$
\text { Work }=工 \quad \int_{0}^{5} 9.8(300-8 \ell) d \ell \quad \mathrm{grams} \mathrm{~m}^{2} / \mathrm{sec}^{2}
$$

