5. [11 points] The parts of this question relate to the following polar graph, defined by the polar curve $r(\theta)=-1+2 \cos (\theta)$, on the domain $[0,2 \pi]$. Both the solid and dashed curves are part of the graph of $r(\theta)$.

a. [2 points] What are all the angles θ, with $0 \leq \theta \leq 2 \pi$, for which the graph passes through the origin?

Answer(s):
b. [2 points] Determine the interval(s) within $[0,2 \pi]$ for which θ traces out the dashed portion of the graph.

Answer(s):
c. [3 points] Write, but do not evaluate, an expression involving one or more integrals which gives the area enclosed by the dashed portion of the graph.

The area is \qquad
5. (continued) For your convenience, the polar graph referenced by this problem is reproduced here:

d. [4 points] Write, but do not evaluate, an expression involving one or more integrals which gives the arc length of the solid portion of the graph.

The arc length is \qquad

