6. [13 points] Some values of the function $f(x)$, its derivatives, and second derivatives are given in the table below. Assume for all positive integers n that $f^{(n)}(x)$ is continuous for all real numbers x.

x	-2	0	2	4	6
$f(x)$	1	2	0	1	2
$f^{\prime}(x)$	3	2	1	0	-2
$f^{\prime \prime}(x)$	-3	-2	0	2	1

Using the information given above, find the following. Be sure to show all of your work. Your answers should not involve the letter f, but you do not need to simplify them.
a. [4 points] Find $\int_{-2}^{2} f^{\prime}(x) f^{\prime \prime}(x) d x$.

Answer: \qquad
b. [3 points] Find the second degree polynomial that best approximates $f(x)$ near $x=6$.

$$
f(x) \approx
$$

c. $[3$ points $]$ Find $\lim _{x \rightarrow 0} \frac{f(x)-2+x^{2}}{x}$

The limit is \qquad
d. [3 points] Find the approximate value of $\int_{-2}^{6} x^{2} f(x) d x$ using $\operatorname{MID}(2)$.

$$
\int_{-2}^{6} x^{2} f(x) d x \approx
$$

