8. [13 points] For each part of this problem circle ALL correct answers. There may be more than one correct answer for each part. You do not need to show your work.
a. [4 points] Which of the following give a parametrization of the top half of the unit circle centered at the origin in the $x y$-plane?
(A) $x=-\sin (t), \quad y=-\cos (t), \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
(B) $x=\sin (t), \quad y=\cos (t), \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
(C) $x=t, \quad y=\sqrt{1-t^{2}}, \quad-1 \leq t \leq 1$.
(D) $x=\cos (t), \quad y=\sin (t), \quad \pi \leq t \leq 2 \pi$.
(E) NONE OF THESE
b. [4 points] Which of the following points given in polar coordinates are the same point as $(x, y)=(-1,1)$ in the $x y$-plane?
(A) $(r, \theta)=\left(2, \frac{3 \pi}{4}\right)$
(B) $(r, \theta)=\left(-2, \frac{\pi}{4}\right)$
(C) $(r, \theta)=\left(\sqrt{2},-\frac{3 \pi}{4}\right)$
(D) $(r, \theta)=\left(-\sqrt{2}, \frac{7 \pi}{4}\right)$
(E) NONE OF THESE
c. [5 points] Which of these options make the following statement true?

The series $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}+n^{2}+n^{3 / 2}} \quad \cdots$
(A) Diverges by the limit comparison test when compared to $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$.
(B) Diverges by the comparison test when compared to $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$.
(C) Diverges by the comparison test when compared to $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$.
(D) Converges by the comparison test when compared to $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$.
(E) Converges by the limit comparison test when compared to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
(F) Converges because $\frac{1}{n^{1 / 2}+n^{2}+n^{3 / 2}} \rightarrow 0$ as $n \rightarrow \infty$.
(G) NONE OF THESE

