2. [15 points] The parts of this problem are unrelated to each other. Be sure to show work for all parts, and circle your final answer.
a. [5 points] A leaking bag of sugar is lifted vertically from the ground to a height of 10 feet above the ground. The weight of the bag of sugar is $6-\sqrt{x} \mathrm{lbs}$ when it has been lifted x feet above the ground. Find the work done lifting the bag, including units. Fully evaluate any integrals, but you do not need to simplify your answer.

Solution: The work is obtained by integrating the force over the distance the bag is lifted. The force on the bag is equal to its weight, so we have:

$$
\begin{aligned}
\int_{0}^{10}(6-\sqrt{x}) d x & =60-\left.\frac{2}{3} x^{3 / 2}\right|_{0} ^{10} \\
& =60-\frac{2}{3} 10^{3 / 2}
\end{aligned}
$$

Answer: $\quad 60-\frac{2}{3} 10^{3 / 2} \mathrm{lbs} \cdot \mathrm{ft}$
b. [5 points] Write an expression involving one or more integrals that gives the volume of the solid obtained by rotating the region in the $x y$-plane bounded between the x-axis, the parabola $y=x^{2}+1$, the line $x=-1$ and the line $x=1$, about the line $x=-2$. Do not evaluate your integral(s).
Solution: Using the shell method, the volume is

$$
\int_{-1}^{1} 2 \pi(x+2)\left(x^{2}+1\right) d x
$$

Answer: $\quad \int_{-1}^{1} 2 \pi(x+2)\left(x^{2}+1\right) d x$
c. [5 points] The function $f(x)=x^{4}+5$ can be rewritten in the form $f(x)=(x+1)^{4}+$ $A(x+1)^{3}+B(x+1)^{2}+C(x+1)+D$, where A, B, C, D are constants. Find the values of A, B, C, D using Taylor series. Other methods used to find the constants will not be given credit.

$$
\begin{aligned}
& A=\frac{-4}{6} \\
& B=\frac{6}{-4} \\
& C=\frac{6}{D}=\frac{-4}{4} \\
&
\end{aligned}
$$

