3. [13 points] A function $g(x)$ has Taylor series centered at $x=5$ given by

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-5)^{n+1}}{(n+1) \cdot 4^{n}}
$$

a. [2 points] Is $g(x)$ increasing or decreasing near $x=5$? Briefly justify your answer.

Solution: The coefficient of $(x-5)$ in the Taylor series is equal to $g^{\prime}(5)$. Therefore $g^{\prime}(5)=\frac{(-1)^{0}}{(0+1) \cdot 4^{0}}=1>0$, so $g(x)$ is increasing near $x=5$.
b. $[3$ points $]$ Find $g^{(1001)}(5)$.

Solution: The coefficient of $(x-5)^{n}$ in the Taylor series for $g(x)$ is $\frac{g^{(n)}(5)}{n!}$. We see that the exponent on $(x-5)$ is 1001 when $n=1000$. Therefore $g^{(1001)}(5)$ is equal to 1001 ! times $\frac{(-1)^{1000}}{(1000+1) \cdot 4^{1000}}$.

$$
g^{(1001)}(5)=\frac{\frac{1001!}{1001 \cdot 4^{1000}}}{}
$$

c. [8 points] Given that the radius of convergence of this Taylor series is 4 (do NOT show this), find the interval of convergence of this Taylor series. Show all your work, including full justification for series behavior.
Solution: Since we know the radius of convergence, we just need to test the behavior at the endpoints, which are $5 \pm 4=1,9$. At $x=1$, the series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(-4)^{n+1}}{(n+1) 4^{n}}=\sum_{n=0}^{\infty} \frac{4(-1)^{n}(-1)^{n+1}}{n+1}=-4 \sum_{n=0}^{\infty} \frac{1}{n+1}
$$

To determine the behavior of this, we use the limit comparison test with comparison series $\sum_{n=1}^{\infty} \frac{1}{n}$. We have (with $a_{n}=\frac{1}{n+1}$ and $b_{n}=\frac{1}{n}$):

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 .
$$

Since 1 is a positive number, and since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by the p-series test with $p=1$, the limit comparison tells us that the series $\sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges. Therefore $-4 \sum_{n=0}^{\infty} \frac{1}{n+1}$ diverges. So $x=1$ is not included in the interval of convergence.

At $x=9$, the series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n+1}}{(n+1) 4^{n}}=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

Since $a_{n}=\frac{1}{n+1} \rightarrow 0$ as $n \rightarrow \infty$, and a_{n} is decreasing, by the alternating series test this series converges.

