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3. [13 points] A function g(x) has Taylor series centered at x = 5 given by
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a. [2 points| Is g(z) increasing or decreasing near x = 57 Briefly justify your answer.

Solution:  The coefficient of (x — 5) in the Taylor series is equal to ¢'(5). Therefore
0
Jg() = ﬁ =1>0, so g(x) is increasing near z = 5.

b. [3 points] Find (1901 (5).

Solution: The coefficient of (x — 5)™ in the Taylor series for g(z) is %. We see that
the exponent on (z — 5) is 1001 when n = 1000. Therefore g% (5) is equal to 1001!
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c. [8 points| Given that the radius of convergence of this Taylor series is 4 (do NOT show
this), find the interval of convergence of this Taylor series. Show all your work, including
full justification for series behavior.

Solution: Since we know the radius of convergence, we just need to test the behavior at
the endpoints, which are 5 +4 =1,9. At z = 1, the series is
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To determine the behavior of this, we use the limit comparison test with comparison
series o | L. We have (with a, = n%rl and b, = 1):
lim 2" = lim —— =1

by, n%oon—i—l_

Since 1 is a positive number, and since y 7, % diverges by the p-series test with p = 1,
the limit comparison tells us that the series Y 7 n%rl diverges. Therefore —4% > nil
diverges. So x = 1 is not included in the interval of convergence.

At x =9, the series is
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Since a, = %H — 0 as n — o0, and a,, is decreasing, by the alternating series test this

series converges.

1,9
Interval of convergence: (1,9]



