5. [11 points] The parts of this question relate to the following polar graph, defined by the polar curve $r(\theta)=-1+2 \cos (\theta)$, on the domain $[0,2 \pi]$. Both the solid and dashed curves are part of the graph of $r(\theta)$.

a. [2 points] What are all the angles θ, with $0 \leq \theta \leq 2 \pi$, for which the graph passes through the origin?
Solution: The curve passes through the origin when $r(\theta)=0$, so we need to solve $\cos (\theta)=1 / 2$. This occurs for θ in $[0,2 \pi]$ at the values $\theta=\pi / 3,5 \pi / 3$.

$$
\text { Answer(s): } \quad \theta=\pi / 3,5 \pi / 3
$$

b. [2 points] Determine the interval(s) within $[0,2 \pi]$ for which θ traces out the dashed portion of the graph.

$$
\text { Answer(s): } \quad[0, \pi / 3] \text { and }[5 \pi / 3,2 \pi]
$$

c. [3 points] Write, but do not evaluate, an expression involving one or more integrals which gives the area enclosed by the dashed portion of the graph.

The area is $\underline{\frac{1}{2} \int_{0}^{\pi / 3}(-1+2 \cos (\theta))^{2} d \theta+\frac{1}{2} \int_{5 \pi / 3}^{2 \pi}(-1+2 \cos (\theta))^{2} d \theta}$
5. (continued) For your convenience, the polar graph referenced by this problem is reproduced here:

d. [4 points] Write, but do not evaluate, an expression involving one or more integrals which gives the arc length of the solid portion of the graph.
Solution: The arclength of the graph is given by

$$
\int_{\pi / 3}^{5 \pi / 3} \sqrt{(r(\theta))^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

We have $d r / d \theta=-2 \sin (\theta)$. This gives the answer below.

The arc length is $\int_{\pi / 3}^{5 \pi / 3} \sqrt{(-1+2 \cos (\theta))^{2}+(-2 \sin (\theta))^{2}} d \theta$

