7. [12 points] The rate of vertical growth $r(t)$ of a tree, in meters per month, is given by

$$
r(t)=\frac{10}{(t+1)^{3 / 2}}
$$

Here, t is measured in months after the tree was planted. When the tree was planted its height was 1 meter.
a. [4 points] Write an expression, possibly involving one or more integrals, for the height of the tree after exactly 1 year has passed since planting it. You do not need to evaluate your integral(s).

Solution: Let $h(t)$ be the height of the tree, in meters, t months after it was planted. So we are looking for $h(12)$. By the fundamental theorem of calculus,

$$
h(12)-h(0)=\int_{0}^{12} r(t) d t .
$$

Since at the time it was planted $(t=0)$, the tree was 1 meter tall, $h(0)=1$. Therefore

$$
h(12)=1+\int_{0}^{12} \frac{10}{(t+1)^{3 / 2}} d t .
$$

b. [2 points] Let $h(t)$ be the height of the tree, in meters, t months after it was planted. Write an expression, possibly involving one or more integrals, for the function $h(t)$. You do not need to evaluate your integral(s).
Solution: By the FTC,

$$
h(t)=1+\int_{0}^{t} \frac{10}{(s+1)^{3 / 2}} d s
$$

c. [6 points] Assuming the tree lives long enough, will the tree ever grow more than 20 meters tall? Justify your answer, and be sure to use proper notation.
Solution: The long-term height of the tree, as $t \rightarrow \infty$, is

$$
\begin{aligned}
\lim _{t \rightarrow \infty} h(t) & =1+\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{10}{(s+1)^{3 / 2}} d s \\
& =1+\lim _{t \rightarrow \infty}-\left.20(s+1)^{-1 / 2}\right|_{0} ^{t} \\
& =1-20 \lim _{t \rightarrow \infty}\left(\frac{1}{\sqrt{1+t}}-1\right) \\
& =21 .
\end{aligned}
$$

Therefore at some point, the tree will grow more than 20 meters tall.

