- 10. [12 points] For the following questions, determine if the statement is ALWAYS true, SOME-TIMES true, or NEVER true, and circle the corresponding answer. Justification is not required.
 - **a.** [2 points] Suppose H(x) is a continuous function such that H'(x) > 0 and $H(x) \ge 0$ for all x. Then H(x) is a cumulative distribution function (cdf).

Circle one:	ALWAYS	SOMETIMES	NEVER

b. [2 points] If a_n is a sequence of positive numbers, and the sequence $S_n = a_1 + \cdots + a_n$ converges to S, then a_n converges to S.

Circle one:	ALWAYS	SOMETIMES	NEVER
-------------	--------	-----------	-------

c. [2 points] The average value of a continuous function f(x) on the interval [0,1] is given by $\int_0^1 x f(x) \, dx$.

 $Circle \ one:$

ALWAYS

ALWAYS

SOMETIMES

NEVER

d. [2 points] $\int_{2}^{3} \frac{1}{x \ln(x)} dx = \int_{2}^{3} \frac{1}{u} du.$

Circle one: ALWAYS

SOMETIMES

NEVER

e. [2 points] If n is a fixed number which is bigger than 100, and MID(n) and LEFT(n) both estimate $\int_0^{\pi/2} \cos(x) \, dx$, then

$$\int_{0}^{\pi/2} \cos(x) \, \mathrm{d}x \le \mathrm{MID}(n) \le \mathrm{LEFT}(n).$$

Circle one:

SOMETIMES NEVER

f. [2 points] If $r = f(\theta)$ is a polar curve, then the arclength of the part of the curve in the first quadrant is given by $\int_0^{\pi/2} \sqrt{(f(\theta))^2 + (f'(\theta))^2} \, \mathrm{d}\theta$.

Circle one: ALWAYS SOMETIMES NEVER