2. [8 points] Consider the function \(G(x) = x^3 \cos(2x) \).

 a. [4 points] Give the first four nonzero terms of the Taylor series of \(G(x) \) centered about \(x = 0 \).

 Solution: Using the known Taylor series of \(\cos(x) \) centered at \(x = 0 \), we have
 \[
 x^3 \cos(2x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!)} (2x)^{2n} x^3 = \sum_{n=0}^{\infty} \frac{(-1)^n2^{2n}}{(2n)!} x^{2n+3}.
 \]
 Thus, the first four nonzero terms of the Taylor series of \(G(x) \) about \(x = 3 \) are
 \[
 x^3 - \frac{2^2}{2!} x^5 + \frac{2^4}{4!} x^7 - \frac{2^6}{6!} x^9.
 \]

 Answer: \(x^3 - \frac{2^2}{2!} x^5 + \frac{2^4}{4!} x^7 - \frac{2^6}{6!} x^9 \)

 b. [4 points] Find \(G^{(2023)}(0) \). You do not need to simplify.

 Solution: The 2023rd power of \(x \) will appear in the Taylor series expansion of \(G(x) \) with a nonzero coefficient. We can see this by noting that \(2n + 3 = 2023 \) if \(n = 1010 \). Therefore,
 \[
 G^{(2023)}(0) = \frac{(-1)^{1010} \cdot 2^{1010}}{(2 \cdot 1010)!},
 \]
 so \(G^{(2023)}(0) = (2023)! \cdot \frac{(-1)^{1010} \cdot 2^{2020}}{2020!} \).

 Answer: \((2023)! \cdot \frac{(-1)^{1010} \cdot 2^{2020}}{2020!} \)