3. [12 points] Antonia the ant is entering her first bug race. The track runs from the start line at the south end, represented by $y=0$, to the finish line at the north end, represented by $y=4$. All distances are given in feet.
Antonia's position t seconds after the race begins is given in parametric equations by:

$$
x=\sin \left(\frac{\pi t}{2}\right), \quad y=1.5^{t}-1,
$$

a. [2 points] What is Antonia's position 2 seconds into the race?

Solution: To find this, we plug $t=2$ into the equations given for the x and y coordinates of Antonia. We find $x=\sin (\pi)=0$ and $y=1.5^{2}-1=1.25$.

$$
x=\begin{aligned}
& 0 \\
& \hline
\end{aligned}
$$

b. [3 points] At what time does Antonia reach the finish line?

Solution: We set $y=4$ to to get $1.5^{t}-1=4$. Therefore, $1.5^{t}=5$, and so $t=\frac{\ln (5)}{\ln (1.5)}$.

The time is $t=\frac{\ln (5)}{\ln (1.5)}$
c. [3 points] What is the first time during the race that Antonia is travelling directly north?

Solution: Note that y is always increasing, so we only need to find the first time that $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$.
We have $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\pi}{2} \cos \left(\frac{\pi t}{2}\right)$, which is equal to 0 when $t=1$.

The time is $t=$ \qquad
d. [4 points] Write an expression involving one or more integrals that gives the total distance, in feet, that Antonia traveled during the race. Do not evaluate your integral(s).
Solution: We use the arclength formula, with $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\pi}{2} \cos \left(\frac{\pi t}{2}\right), \frac{\mathrm{d} y}{\mathrm{~d} t}=\ln (1.5) 1.5^{t}$, and using the time we found in part b.

The distance is $\quad \int_{0}^{\ln (5) / \ln (1.5)} \sqrt{\left(\frac{\pi}{2} \cos \left(\frac{\pi t}{2}\right)\right)^{2}+\left(\ln (1.5) 1.5^{t}\right)^{2}} \mathrm{~d} t$

