6. [10 points] Consider an infinitely differentiable function f(x). The following table gives some values of f(x) and its derivatives at x = 1:

f(1)	f'(1)	f''(1)	f'''(1)
$\pi/4$	1/2	-1/4	2

a. [4 points] Write down $P_3(x)$, the third-degree Taylor polynomial of f(x) about x = 1. You do not need to simplify.

$$P_3(x) = \frac{\frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4 \cdot 2!}(x-1)^2 + \frac{2}{3!}(x-1)^3}{\frac{1}{4 \cdot 2!}(x-1)^2 + \frac{2}{3!}(x-1)^3}$$

b. [3 points] Recall that $f(x) \approx P_3(x)$ near x = 1. Use this and the fact that $f(1.5) = \pi/3$ to write an approximation for π . You do not need to simplify your answer. Your answer should not contain the symbol π .

Solution: Using $f(x) \approx P_3(x)$ near x = 1, we have

$$\frac{\pi}{3} = f(1.5) \approx P_3(1.5) = \frac{\pi}{4} + \frac{1}{2}(0.5) - \frac{1}{4 \cdot 2!}(0.5)^2 + \frac{2}{3!}(0.5)^3.$$

So $\frac{\pi}{3} - \frac{\pi}{4} \approx \frac{1}{2}(0.5) - \frac{1}{4 \cdot 2!}(0.5)^2 + \frac{2}{3!}(0.5)^3$. By getting a common denominator of 12 on the left-hand side of the approximation, we get

$$\pi \approx 12 \cdot \left(\frac{1}{2}(0.5) - \frac{1}{4 \cdot 2!}(0.5)^2 + \frac{2}{3!}(0.5)^3\right)$$

$$\pi \approx \underline{\qquad \qquad 12 \cdot \left(\frac{1}{2}(0.5) - \frac{1}{4 \cdot 2!}(0.5)^2 + \frac{2}{3!}(0.5)^3\right)}$$

c. [3 points]

Use the Taylor polynomial from part **a**. to approximate the definite integral

$$\int_{1}^{1.1} f(x) \,\mathrm{d}x.$$

You do not need to simplify your answer.

Solution:

$$\int_{1}^{1.1} f(x) \, \mathrm{d}x \approx \int_{1}^{1.1} P_3(x) \, \mathrm{d}x = \frac{\pi}{4} (0.1) + \frac{1}{2 \cdot 2} (0.1)^2 - \frac{1}{3 \cdot 4 \cdot 2!} (0.1)^3 + \frac{2}{4 \cdot 3!} (0.1)^4.$$

Answer:
$$\frac{\pi}{4}(0.1) + \frac{1}{2 \cdot 2}(0.1)^2 - \frac{1}{3 \cdot 4 \cdot 2!}(0.1)^3 + \frac{2}{4 \cdot 3!}(0.1)^4$$