6. [10 points] Consider an infinitely differentiable function $f(x)$. The following table gives some values of $f(x)$ and its derivatives at $x=1$:

$f(1)$	$f^{\prime}(1)$	$f^{\prime \prime}(1)$	$f^{\prime \prime \prime}(1)$
$\pi / 4$	$1 / 2$	$-1 / 4$	2

a. [4 points] Write down $P_{3}(x)$, the third-degree Taylor polynomial of $f(x)$ about $x=1$. You do not need to simplify.

$$
P_{3}(x)=-\frac{\pi}{4}+\frac{1}{2}(x-1)-\frac{1}{4 \cdot 2!}(x-1)^{2}+\frac{2}{3!}(x-1)^{3}
$$

b. [3 points] Recall that $f(x) \approx P_{3}(x)$ near $x=1$. Use this and the fact that $f(1.5)=\pi / 3$ to write an approximation for π. You do not need to simplify your answer. Your answer should not contain the symbol π.

Solution: Using $f(x) \approx P_{3}(x)$ near $x=1$, we have

$$
\frac{\pi}{3}=f(1.5) \approx P_{3}(1.5)=\frac{\pi}{4}+\frac{1}{2}(0.5)-\frac{1}{4 \cdot 2!}(0.5)^{2}+\frac{2}{3!}(0.5)^{3} .
$$

So $\frac{\pi}{3}-\frac{\pi}{4} \approx \frac{1}{2}(0.5)-\frac{1}{4 \cdot 2!}(0.5)^{2}+\frac{2}{3!}(0.5)^{3}$. By getting a common denominator of 12 on the left-hand side of the approximation, we get

$$
\begin{aligned}
\pi & \approx 12 \cdot\left(\frac{1}{2}(0.5)-\frac{1}{4 \cdot 2!}(0.5)^{2}+\frac{2}{3!}(0.5)^{3}\right) \\
\pi & \approx \quad 12 \cdot\left(\frac{1}{2}(0.5)-\frac{1}{4 \cdot 2!}(0.5)^{2}+\frac{2}{3!}(0.5)^{3}\right)
\end{aligned}
$$

c. [3 points]

Use the Taylor polynomial from part a. to approximate the definite integral

$$
\int_{1}^{1.1} f(x) \mathrm{d} x
$$

You do not need to simplify your answer.

Solution:

$$
\int_{1}^{1.1} f(x) \mathrm{d} x \approx \int_{1}^{1.1} P_{3}(x) \mathrm{d} x=\frac{\pi}{4}(0.1)+\frac{1}{2 \cdot 2}(0.1)^{2}-\frac{1}{3 \cdot 4 \cdot 2!}(0.1)^{3}+\frac{2}{4 \cdot 3!}(0.1)^{4} .
$$

Answer: $\quad \frac{\pi}{4}(0.1)+\frac{1}{2 \cdot 2}(0.1)^{2}-\frac{1}{3 \cdot 4 \cdot 2!}(0.1)^{3}+\frac{2}{4 \cdot 3!}(0.1)^{4}$

