7. [16 points] A particle moves along a path given by the polar curve $r=\cos (\theta / 2), 0 \leq \theta \leq 4 \pi$. The polar curve is graphed below. A portion of the polar curve is dashed.

a. [4 points] The distance from the origin to the point labeled P is $\sqrt{3} / 2$. Find the Cartesian coordinates corresponding to the point labeled P.
Solution: Consider the polar coordinates (r, θ) of the point P. By the hypothesis of the problem, $r=\sqrt{3} / 2$. To determine θ, we want to solve $\cos (\theta / 2)=\sqrt{3} / 2$. We find that

$$
\theta / 2=\pi / 6 \Rightarrow \theta=\pi / 3 .
$$

Plugging the polar coordinates into $x=r \cos (\theta), y=r \sin (\theta)$ gets us

$$
x=\frac{\sqrt{3}}{2} \cos (\pi / 3)=\frac{\sqrt{3}}{4}, \quad y=\frac{\sqrt{3}}{2} \sin (\pi / 3)=\frac{3}{4}
$$

$$
(x, y)=\ldots \quad(\sqrt{3} / 4,3 / 4)
$$

b. [4 points] For what values of θ in $[0,4 \pi]$ does the particle pass through the origin?

Solution: We solve $\cos (\theta / 2)=0$ and see that $\theta / 2=m \pi / 2$, where m is an odd integer. The only θ in the interval $[0,4 \pi]$ that satisfy this equation are $\theta=\pi, 3 \pi$.

$$
\theta=
$$

7. (continued) The graph of the polar curve $r=\cos (\theta / 2)$, with $0 \leq \theta \leq 4 \pi$, from the previous page is reproduced below:

c. [4 points] Determine the interval(s) within [$0,4 \pi$] for which θ traces out the dashed portion of the graph.

Answer: \qquad $[\pi / 2, \pi] \cup[3 \pi / 2,5 \pi / 2] \cup[3 \pi, 7 \pi / 2]$
d. [4 points] Write an expression involving one or more integrals for the shaded area enclosed by the dashed portion of the particle's path. Do not evaluate your integral(s).

Answer:

$$
\int_{3 \pi / 2}^{5 \pi / 2} \frac{1}{2} \cos ^{2}(\theta / 2) \mathrm{d} \theta-2 \int_{\pi / 2}^{\pi} \frac{1}{2} \cos ^{2}(\theta / 2) \mathrm{d} \theta
$$

