7. [16 points] A particle moves along a path given by the polar curve $r = \cos(\theta/2), 0 \le \theta \le 4\pi$. The polar curve is graphed below. A portion of the polar curve is dashed.

a. [4 points] The distance from the origin to the point labeled P is $\sqrt{3}/2$. Find the Cartesian coordinates corresponding to the point labeled P.

Solution: Consider the polar coordinates (r, θ) of the point P. By the hypothesis of the problem, $r = \sqrt{3}/2$. To determine θ , we want to solve $\cos(\theta/2) = \sqrt{3}/2$. We find that

 $\theta/2 = \pi/6 \Rightarrow \theta = \pi/3.$

Plugging the polar coordinates into $x = r \cos(\theta), y = r \sin(\theta)$ gets us

$$x = \frac{\sqrt{3}}{2}\cos(\pi/3) = \frac{\sqrt{3}}{4}, \quad y = \frac{\sqrt{3}}{2}\sin(\pi/3) = \frac{3}{4}$$

$$(x,y) =$$
_____($\sqrt{3/4}, 3/4$)

b. [4 points] For what values of θ in $[0, 4\pi]$ does the particle pass through the origin?

Solution: We solve $\cos(\theta/2) = 0$ and see that $\theta/2 = m\pi/2$, where m is an odd integer. The only θ in the interval $[0, 4\pi]$ that satisfy this equation are $\theta = \pi, 3\pi$.

$$\theta = \pi, 3\pi$$

7. (continued) The graph of the polar curve $r = \cos(\theta/2)$, with $0 \le \theta \le 4\pi$, from the previous page is reproduced below:

c. [4 points] Determine the interval(s) within $[0, 4\pi]$ for which θ traces out the **dashed** portion of the graph.

Answer: $[\pi/2,\pi] \cup [3\pi/2,5\pi/2] \cup [3\pi,7\pi/2]$

d. [4 points] Write an expression involving one or more integrals for the shaded area enclosed by the dashed portion of the particle's path. Do not evaluate your integral(s).

Answer:
$$\int_{3\pi/2}^{5\pi/2} \frac{1}{2} \cos^2(\theta/2) \, \mathrm{d}\theta - 2 \int_{\pi/2}^{\pi} \frac{1}{2} \cos^2(\theta/2) \, \mathrm{d}\theta$$