9. [8 points] A power series centered at $x=3$ given by

$$
\sum_{n=0}^{\infty} \frac{n^{2}+1}{2^{n}(n+2)}(x-3)^{n} .
$$

The radius of convergence of this power series is 2 (do NOT show this). Find the interval of convergence of this power series. Show all your work, including full justification for series behavior.
Solution: Since we know the radius of convergence, we just need to test the behavior at the endpoints, which are $3 \pm 2=1,5$. At $x=1$, the series is

$$
\sum_{n=0}^{\infty} \frac{n^{2}+1}{2^{n}(n+2)}(1-3)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(n^{2}+1\right)}{n+2} .
$$

To determine the behavior of this, we use the nth term test for divergence.

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}\left(n^{2}+1\right)}{n+2}=\lim _{n \rightarrow \infty}(-1)^{n} n
$$

which does not exist, and so the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(n^{2}+1\right)}{n+2}$ diverges by the nth term test for divergence. So $x=1$ is not included in the interval of convergence.

Similarly, at $x=5$, the series is

$$
\sum_{n=0}^{\infty} \frac{n^{2}+1}{2^{n}(n+2)}(5-3)^{n}=\sum_{n=0}^{\infty} \frac{n^{2}+1}{n+2} .
$$

Since $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n+2}=\infty$, this series also diverges by the nth term test for divergence.
Therefore, the interval of convergence is $(1,5)$.

