- 1. [11 points] Consider the polar curve $r = \theta \sin \theta$.
 - **a.** [2 points] What are the x- and y-coordinates of the curve in terms of θ ? Use this to write a set of parametric equations for the curve.

Answer: $x(\theta) = \underline{\hspace{1cm}}$ and $y(\theta) = \underline{\hspace{1cm}}$

b. [2 points] Which of the following points are on the curve $r = \theta \sin \theta$? Circle **all** options which apply.

i.
$$\theta = \frac{\pi}{2}, r = \frac{\pi}{2}$$

v.
$$x = 0, y = \frac{\pi}{2}$$

ii.
$$\theta = \frac{3\pi}{2}, r = \frac{3\pi}{2}$$

vi.
$$x = 0, y = -\frac{\pi}{2}$$

iii.
$$\theta = \pi, r = \pi$$

vii.
$$x = 0, y = -\frac{3\pi}{2}$$

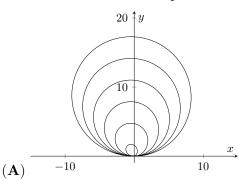
iv.
$$\theta = 2\pi + \frac{\pi}{2}, r = \frac{\pi}{2}$$

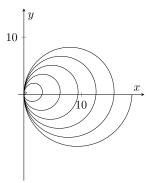
- viii. NONE OF THESE
- **c**. [1 point] Find $\frac{dy}{d\theta}$ in terms of θ .

Answer: $\frac{dy}{d\theta} =$ ______

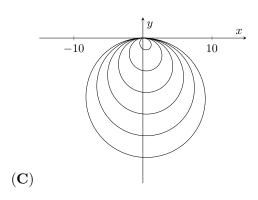
d. [2 points] At which of the following values of θ could the curve $r = \theta \sin \theta$ have a horizontal tangent line? Circle all options which apply.

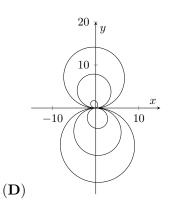
i.
$$\theta = \frac{\pi}{2}$$


iv.
$$\theta = \frac{2025}{2}\pi$$


ii.
$$\theta=\pi$$

v. NONE OF THESE


iii. $\theta = 2024\pi$


e. [2 points] Which of the following could be the graph of the polar curve $r = \theta \sin \theta$, with $0 \le \theta \le 6\pi$? Circle the **one** best option.

 (\mathbf{B})

f. [2 points] Which of the following integrals gives the length of the curve $r = \theta \sin \theta$, for $0 \le \theta \le 6\pi$? Circle all options which apply.

i.
$$\int_0^{6\pi} \sqrt{\left(\theta \left(\cos^2 \theta - \sin^2 \theta\right) + \sin \theta \cos \theta\right)^2 + \left(\sin \theta \left(2\theta \cos \theta + \sin \theta\right)\right)^2} d\theta$$

ii.
$$\int_0^{6\pi} \sqrt{(\theta \cos \theta + \sin \theta)^2 + (\theta \sin \theta)^2} d\theta$$

iii.
$$\int_{0}^{2\pi} \sqrt{\left(\theta \left(\cos^{2} \theta - \sin^{2} \theta\right) + \sin \theta \cos \theta\right)^{2} + \left(\sin \theta \left(2\theta \cos \theta + \sin \theta\right)\right)^{2}} d\theta$$

iv.
$$\int_0^{2\pi} \sqrt{(\theta \cos \theta + \sin \theta)^2 + (\theta \sin \theta)^2} d\theta$$

v. None of the above.