8. [12 points] For the following questions, determine if the statement is ALWAYS true, SOMETIMES true, or NEVER true, and circle the corresponding answer. Justification is not required.

a. [2 points] If a sequence a_n is monotone and bounded, then it converges.

Circle one:

ALWAYS

SOMETIMES

NEVER

b. [2 points] If a sequence b_n is bounded, then it is monotone.

Circle one:

ALWAYS

SOMETIMES

NEVER

c. [2 points] Let c_n be a sequence and g(x) be a function with $g(n) = c_n$ for all $n \ge 1$. If $\int_1^\infty g(x) \, dx$ diverges, then $\sum_{n=1}^\infty c_n$ diverges.

Circle one:

ALWAYS

SOMETIMES

NEVER

d. [2 points] The sequence d_n has $d_n \ge 0$ for $n \ge 1$. If $\lim_{n \to \infty} d_n = 0$, then $\sum_{n=1}^{\infty} (-1)^n d_n$ converges.

Circle one:

ALWAYS

SOMETIMES

NEVER

e. [2 points] If a > 0, then the series $\sum_{n=1}^{\infty} \ln(n^a)$ converges.

Circle one:

ALWAYS

SOMETIMES

NEVER

f. [2 points] The sequence k_n has $k_n > 0$ for all $n \ge 1$. If $\sum_{n=1}^{\infty} k_n$ converges, then $\sum_{n=1}^{\infty} \ln(k_n)$ converges.

Circle one:

ALWAYS

SOMETIMES

NEVER