

3. [5 points] Throughout this problem, suppose that:

- $a_n$  is a sequence with  $a_1 = 60$ , and with  $a_{n+1} = \frac{1}{3}a_n$  for all  $n \geq 1$ .
- $b_n$  is a sequence with  $b_1 = \frac{1}{2}$ , and with  $b_{n+1} = 2b_n$  for all  $n \geq 1$ .
- $S_n = \sum_{j=1}^n a_j$ .
- $R_n = \sum_{k=1}^n S_k$ .

For each of the following sequences, determine whether the sequence converges or diverges, and if it converges, determine the value that it converges to. Justification is not required.

a. [1 point]  $a_n$

*Circle one:*      **Diverges**      **Converges to** \_\_\_\_\_

b. [1 point]  $b_n$

*Circle one:*      **Diverges**      **Converges to** \_\_\_\_\_

c. [1 point]  $c_n = a_n \cdot b_n$

*Circle one:*      **Diverges**      **Converges to** \_\_\_\_\_

d. [1 point]  $S_n$

*Circle one:*      **Diverges**      **Converges to** \_\_\_\_\_

e. [1 point]  $R_n$

*Circle one:*      **Diverges**      **Converges to** \_\_\_\_\_