

1. [9 points] Some values of the function $g(x)$ and its derivative are given in the table below. Suppose that both $g(x)$ and $g'(x)$ are continuous.

x	1	3	5	7	9
$g(x)$	3	1	4	2	5
$g'(x)$	-2	0	3	-1	4

Using the information given above, find the following. Be sure to **show all of your work**. Your answers should not involve the letter g , but you **do not need to simplify them**.

a. [3 points] Suppose $F(x) = \int_1^{x^2} g(t) dt$. Find $F'(3)$.

Solution: By the Second Fundamental Theorem of Calculus, combined with the Chain Rule,

$$F'(x) = 2xg(x^2)$$

so

$$F'(3) = 2 \cdot 3 \cdot g(9) = 30.$$

Answer: 30

b. [3 points] Find $\lim_{x \rightarrow 1} \frac{3 \ln(x) + g(x) - 3}{x - 1}$.

Solution: We use L'Hospital's rule to find the limit.

$$\begin{aligned} \lim_{x \rightarrow 1} \frac{3 \ln(x) + g(x) - 3}{x - 1} &\stackrel{\text{LH}}{=} \lim_{x \rightarrow 1} \frac{3}{x} + g'(x) \\ &= 3 + g'(1) \\ &= 1 \end{aligned}$$

Answer: 1

c. [3 points] Use MID(2) to find the approximate value of $\int_1^9 \frac{g(x)}{1+x^3} dx$. Write out all the terms in your sum and do not attempt to simplify.

Solution: Note that the midpoints we use are 3 and 7. Then our MID(2) approximation is

$$4 \cdot \frac{g(3)}{1+3^3} + 4 \cdot \frac{g(7)}{1+7^3}.$$

Answer: $\frac{4}{1+3^3} + \frac{8}{1+7^3}$