

2. [14 points] A function $f(x)$ is defined on the interval $(0, 2)$ by its Taylor series around $x = 1$,

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2n+1} (x-1)^{2n+1}.$$

- a. [3 points] Find $f^{(2025)}(1)$ and $f^{(2026)}(1)$.

Solution: If we write down the Taylor series of f around 1, $f^{(2025)}(1)$ appears in the coefficient of $(x-1)^{2025}$, where $n = 1012$. Therefore, comparing coefficients, we get

$$\frac{1}{2025} = \frac{f^{(2025)}(1)}{2025!},$$

and thus $f^{(2025)}(1) = \frac{2025!}{2025} = 2024!$.

We also notice that all even powers of x have zero coefficient, so $f^{(2026)}(1) = 0$.

Answer: $f^{(2025)}(1) = \underline{\hspace{2cm} 2024! \hspace{2cm}}$ and $f^{(2026)}(1) = \underline{\hspace{2cm} 0 \hspace{2cm}}$

- b. [5 points] Find the degree 7 Taylor polynomial around $x = 1$ for $f(x)$.

Solution: We include all the terms up to $(x-1)^7$. Therefore, the degree 7 Taylor polynomial is

$$(x-1) + \frac{1}{3}(x-1)^3 + \frac{1}{5}(x-1)^5 + \frac{1}{7}(x-1)^7.$$

Answer: $\underline{\hspace{4cm} (x-1) + \frac{1}{3}(x-1)^3 + \frac{1}{5}(x-1)^5 + \frac{1}{7}(x-1)^7 \hspace{1cm}}$

- c. [3 points] Find the degree 6 Taylor polynomial around $x = 1$ for $f'(x)$, the **derivative** of $f(x)$.

Solution: We take the derivative of the polynomial in b. and get

$$1 + (x-1)^2 + (x-1)^4 + (x-1)^6.$$

Answer: $\underline{\hspace{4cm} 1 + (x-1)^2 + (x-1)^4 + (x-1)^6 \hspace{1cm}}$

- d. [3 points] Find a closed-form expression of the derivative $f'(x)$ which applies on the interval $(0, 2)$. Closed form means your answer should not include ellipses or sigma notation.

Solution: Using our known Taylor series, we notice that

$$f'(x) = \sum_{n=0}^{\infty} (x-1)^{2n} = \frac{1}{1-(x-1)^2}$$

on $(0, 2)$, which is the interval of convergence of $f(x)$.

Answer: $f'(x) = \underline{\hspace{4cm} \frac{1}{1-(x-1)^2} \hspace{1cm}}$