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5. [10 points] Consider the Taylor series Z M
. P y ’n:12n_(n3+1)

a. [1 point] Determine the center, a, of the Taylor series.

(x+3)".

Answer: a = —3

b. [9 points] The radius of convergence of the Taylor series is 2 (you do not need to show this).
Determine the interval of convergence of the Taylor series. Show all your work, including full
justification for series behavior.

Solution: Given that the center is x = —3 and that the radius of convergence is 2, we need to
check the endpoints x = —1 and x = —5.
When x = —1, the series is
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We can use the Limit Comparison Test (LCT) or Direct Comparison Test (DCT) to show
divergence. For the Limit Comparison Test (LCT), we note that
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Alternatively, for the Direct Comparison Test (DCT), we note that for n > 1,
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diverges.
When x = —5, the Taylor series is

= 9n?48 > 9n? +8
(=)= =
;2”-(713—1-1)( ) nz:l( ) nd+1

We want to use Alternating Series Test (AST) to justify convergence. We see that
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converges by alternating series test (AST). Hence the interval of convergence is [—5, —1).

Answer: The interval of convergence is [=5,—1)
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