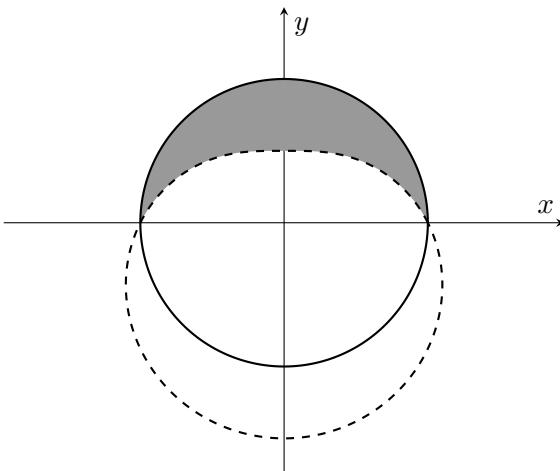


7. [10 points] Nowadays, David's haircut is more simplistic. In a poster for a more recent album, David's haircut is given by the shaded region below. The solid curve is a circle centered at the origin with radius 2, while the dashed curve is given by the equation $r(\theta) = 2 - \sin(\theta)$, where $0 \leq \theta \leq 2\pi$.



- a. [2 points] Find the two intersection points of the two curves in the diagram. Express the intersection points in polar coordinate form (r, θ) , where $r > 0$ and $0 \leq \theta < 2\pi$.

Solution: The intersection points correspond to $2 - \sin(\theta) = 2$. Solving, we find $\theta = 0$, and $\theta = \pi$ since we require $0 \leq \theta < 2\pi$.

Answer: $(2, 0)$ and $(2, \pi)$

- b. [4 points] Write an expression involving one or more integrals that gives the total perimeter of the shaded region. Your final answer should not involve the letter r . Do not evaluate your integral(s).

Solution: The solid line is the arc of a semicircle with radius 2, so has length 2π . For the dotted curve, we note that $r'(\theta) = -\cos(\theta)$, so the arclength is

$$\int_0^\pi \sqrt{r(\theta)^2 + r'(\theta)^2} d\theta = \int_0^\pi \sqrt{(2 - \sin \theta)^2 + \cos^2 \theta} d\theta.$$

Therefore the total perimeter of the shaded area is

$$2\pi + \int_0^\pi \sqrt{(2 - \sin \theta)^2 + \cos^2 \theta} d\theta.$$

Answer: $2\pi + \int_0^\pi \sqrt{(2 - \sin \theta)^2 + \cos^2 \theta} d\theta$

- c. [4 points] Write an expression involving one or more integrals that gives the area of the shaded region. Your final answer should not involve the letter r . Do not evaluate your integral(s).

Solution:

The area inside the dotted curve but above the x -axis is given by $\frac{1}{2} \int_0^\pi (2 - \sin \theta)^2 d\theta$. We subtract this from the area of the semi-circle above the x -axis to obtain

$$2\pi - \frac{1}{2} \int_0^\pi (2 - \sin \theta)^2 d\theta.$$

Answer: $2\pi - \frac{1}{2} \int_0^\pi (2 - \sin \theta)^2 d\theta$