1. (4 points) Circle the differential equation whose slope field is shown in the figure.

A.
$$\frac{dy}{dx} = \sin x$$

B.
$$\frac{dy}{dx} = -y$$

A.
$$\frac{dy}{dx} = \sin x$$
 B. $\frac{dy}{dx} = -y$ C. $\frac{dy}{dx} = x^2 + y^2$

D.
$$\frac{dy}{dx} = x + y$$

$$E. \quad \frac{dy}{dx} = x - 2y$$

D.
$$\frac{dy}{dx} = x + y$$
 E. $\frac{dy}{dx} = x - 2y$ F. $\frac{dy}{dx} = \sin(x + y)$

2. (6 points) The function f is a continuous function, some of whose values are given in the following table.

x	0	1	2	3	4	5	6
f(x)	8	6	3	-2	0	1	2

For the function F defined by $F(x) = \int_0^x f(t)e^{-t} dt$, what is F'(2)?

$$F'(2) = \underline{\qquad}.$$

3. (6 points) Does the infinite series $\sum_{n=1}^{\infty} ne^{-n^2}$ converge or diverge? (Show your work.)