1. [9 points] When a rocket leaves the gravitational influence of the Earth, it could travel infinitely far away (if we ignore the effects of other celestial bodies). When a rocket of mass m kilograms is h meters above the surface of the Earth, it has a weight of $w=9.8 m\left(\frac{6,400,000}{6,400,000+h}\right)^{2}$ Newtons. Here, $6,400,000$ is the radius of the Earth in meters, and 9.8 is the gravitational constant in $\mathrm{m} / \mathrm{s}^{2}$.
a. [3 points] Approximately how much work is required to lift the rocket Δh additional meters when it is already h meters above the surface of the Earth? Your answer may include m, h, and Δh.
b. [6 points] Figure out the work required to lift the rocket from the surface of the Earth to a height of infinity. Your answer may include m.
